用 PCA 方法进行数据降维

在这里我们要说明一下本次使用的数据集,该数据集是Iris Flower Dataset,即著名的鸢尾花数据集。该数据集只有5个维度(其中我们主要用到前4个维度),样本量也只有150个,整个数据集比较轻便,非常适合做数据展示。
https://mp.weixin.qq.com/s?__biz=MzAxMjUyNDQ5OA==&mid=2653563742&idx=1&sn=0c30499a4680bdf025d41feea6d04c83&chksm=806e05e3b7198cf50c95ed5edff7c2d927d4bcc3427e1fdaa1c897a612ba3cd4130dcb148773&scene=27

1.首先导入需要的库

import numpy as np 
import pandas as pd 
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值