In probability theory, the expected value of a random variable, intuitively, is the long-run average value of repetitions of the experiment it represents.
期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。
如果X是在概率空间(Ω, F, P)中的随机变量,那么它的期望值E[X]的定义是:
也就是试验中每次可能的结果乘以其结果概率的总和。
期望的基本性质有:
- 线性
- 在一般情况下,两个随机变量的积的期望值不等于这两个随机变量的期望值的积。
- 当 E[XY]=E[x]E[y]成立时,随机变量 X和 Y的协方差为0,又称它们不相关。特别的,当两个随机变量独立时,它们协方差(若存在)为0。
- 期望值也可以通过方差计算公式来计算方差