概率论知识回顾(十五)
重点:变量函数的期望,期望的性质
知识回顾用于巩固知识和查漏补缺。知识回顾步骤:
- 查看知识回顾中的问题,尝试自己解答
- 自己解答不出来的可以查看下面的知识解答巩固知识。
- 对知识解答有疑问的,说明有关这一点的知识或者公式没有理解透彻或者没有记住,要重新翻看书籍。
知识回顾
- 离散型随机变量的函数的数学期望怎么表示?
- 连续型随机变量的函数的数学期望怎么表示?
- 证明 E ( Y ) = ∫ 0 + ∞ P { Y > y } d y − ∫ 0 + ∞ P { Y < − y } d y E(Y) = \int_{0}^{+\infty}P\begin{Bmatrix} Y > y \end{Bmatrix}dy - \int_0^{+\infty}P\begin{Bmatrix} Y < -y \end{Bmatrix}dy E(Y)=∫0+∞P{Y>y}dy−∫0+∞P{Y<−y}dy
- 二维离散型随机变量的函数的数学期望怎么表示?
- 二维连续型随机变量的函数的数学期望怎么表示?
- 随机变量期望的性质有哪些?
知识解答
-
离散型随机变量的函数的数学期望怎么表示?
- 设随机变量 X X X 的分布律为 P { X = x k } = p k , k = 0 , 1 , 2 , . . . P\begin{Bmatrix} X = x_k \end{Bmatrix} = p_k, k = 0, 1, 2,... P{X=xk}=pk,k=0,1,2,...。对于 g ( X ) g(X) g(X) 来说:如果 g ( x ) g(x) g(x) 是实值单值函数并且 ∑ k ∣ g ( x k ) ∣ p k < + ∞ \sum_k|g(x_k)|p_k < +\infty ∑k∣g(xk)∣pk<+∞ 则 g ( X ) g(X) g(X) 的期望存在,并且 E g ( X ) = ∑ k g ( x k ) p k Eg(X) = \sum_kg(x_k)p_k Eg(X)=∑kg(xk)pk
-
连续型随机变量的函数的数学期望怎么表示?
- 设随机变量 X X X 的密度函数为 f ( x ) f(x) f(x), 对于 g ( X ) g(X) g(X) 来说:如果 g(x) 是实值单值函数并且 ∫ − ∞ + ∞ ∣ g ( x ) ∣ f ( x ) d x < + ∞ \int_{-\infty}^{+\infty}|g(x)|f(x)dx < + \infty ∫−∞+∞∣g(x)∣f(x)dx<+∞, 则 g ( X ) g(X) g(X) 的期望存在,并且 E g ( X ) = ∫ − ∞ + ∞ g ( x ) f ( x ) d x Eg(X) = \int_{-\infty}^{+\infty}g(x)f(x)dx Eg(X)=∫−∞+∞g(x)f(x)dx
-
证明 E ( Y ) = ∫ 0 + ∞ P { Y > y } d y − ∫ 0 + ∞ P { Y < − y } d y E(Y) = \int_{0}^{+\infty}P\begin{Bmatrix} Y > y \end{Bmatrix}dy - \int_0^{+\infty}P\begin{Bmatrix} Y < -y \end{Bmatrix}dy E(Y)=∫0+∞P{Y>y}dy−∫0+∞P{Y<−y}dy。
-
首先推导前半部分
∫ 0 + ∞ P { Y > y } d y = ∫ 0 + ∞ ∫ y + ∞ f Y ( x ) d x d y = ∫ 0 + ∞ ∫ 0 x d y f Y ( x ) d x = ∫ 0 + ∞ x f Y ( x ) d x \int_{0}^{+\infty}P\begin{Bmatrix} Y > y \end{Bmatrix}dy \\ = \int_{0}^{+\infty} \int_{y}^{+\infty}f_Y(x)dxdy \\ = \int_{0}^{+\infty} \int_{0}^{x}dyf_Y(x)dx \\ = \int_{0}^{+\infty} xf_Y(x)dx ∫0+∞P{Y>y}dy=∫0+∞∫y+∞fY(x)dxdy=∫0+∞∫0xdyfY(x)dx=∫0+∞xfY(x)dx
-
同理后半部分
∫ 0 + ∞ P { Y < − y } d y = ∫ 0 + ∞ ∫ − ∞ − y f Y ( x ) d x d y = ∫ − ∞ 0 ∫ 0 − x d y f Y ( x ) d x = − ∫ − ∞ 0 x f Y ( x ) d x \int_{0}^{+\infty}P\begin{Bmatrix} Y < -y \end{Bmatrix}dy \\ = \int_{0}^{+\infty} \int_{-\infty}^{-y}f_Y(x)dxdy \\ = \int_{-\infty}^{0} \int_{0}^{-x}dyf_Y(x)dx \\ = -\int_{-\infty}^{0} xf_Y(x)dx ∫0+∞P{Y<−y}dy=∫0+∞∫−∞−yfY(x)dxdy=∫−∞0∫0−xdyfY(x)dx=−∫−∞0xfY(x)dx
-
因此有:
E ( Y ) = ∫ 0 + ∞ P { Y > y } d y − ∫ 0 + ∞ P { Y < − y } d y = ∫ 0 + ∞ x f Y ( x ) d x − ( − ∫ − ∞ 0 x f Y ( x ) d x ) = ∫ − ∞ + ∞ x f Y ( x ) d x = E ( Y ) \begin{aligned}E(Y) &= \int_{0}^{+\infty}P\begin{Bmatrix} Y > y \end{Bmatrix}dy - \int_0^{+\infty}P\begin{Bmatrix} Y < -y \end{Bmatrix}dy \\&= \int_{0}^{+\infty} xf_Y(x)dx - ( -\int_{-\infty}^{0} xf_Y(x)dx) \\&= \int_{-\infty}^{+\infty}xf_Y(x)dx = E(Y)\end{aligned} E(Y)=∫0+∞P{Y>y}dy−∫0+∞P{Y<−y}dy=∫0+∞xfY(x)dx−(−∫−∞0xfY(x)dx)=∫−∞+∞xfY(x)dx=E(Y)
-
根据这个定理可证明连续随机变量的数学期望公式。
-
-
二维离散型随机变量的函数的数学期望怎么表示?
- 设二维随机变量 ( X , Y ) (X, Y) (X,Y) 的分布律为 P { X = x i , Y = y j } = p i j , i , j = 0 , 1 , 2 , . . . P\begin{Bmatrix} X = x_i, Y = y_j \end{Bmatrix} = p_{ij}, i,j = 0, 1, 2,... P{X=xi,Y=yj}=pij,i,j=0,1,2,... 对于 g ( X , Y ) g(X, Y) g(X,Y) 来说,如果 g ( x , y ) g(x, y) g(x,y) 是关于x, y实值单值函数,并且有 ∑ i ∑ j ∣ g ( x i , y j ) ∣ p i j < + ∞ \sum_{i}\sum_{j}|g(x_i, y_j)|p_{ij} < + \infty ∑i∑j∣g(xi,yj)∣pij<+∞ ,则其数学期望存在,并且 E g ( X , Y ) = ∑ i ∑ j g ( x i , y j ) p i j Eg(X, Y) = \sum_{i}\sum_{j}g(x_i, y_j)p_{ij} Eg(X,Y)=∑i∑jg(xi,yj)pij
-
二维连续型随机变量的函数的数学期望怎么表示?
- 设二维随机变量 ( X , Y ) (X, Y) (X,Y) 的密度函数为 f ( x , y ) f(x, y) f(x,y) 对于 g ( X , Y ) g(X, Y) g(X,Y) 来说,如果 g ( x , y ) g(x, y) g(x,y) 是关于x, y实值单值函数,并且有 ∫ − ∞ + ∞ ∣ g ( x , y ) ∣ f ( x , y ) d x d y < + ∞ \int_{-\infty}^{+\infty}|g(x, y)|f(x, y)dxdy < +\infty ∫−∞+∞∣g(x,y)∣f(x,y)dxdy<+∞ ,则其数学期望存在,并且 E g ( X , Y ) = ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y Eg(X, Y) = \int_{-\infty}^{+\infty}g(x, y)f(x, y)dxdy Eg(X,Y)=∫−∞+∞g(x,y)f(x,y)dxdy
-
随机变量期望的性质有哪些?
-
对于常数, E ( C ) = C E(C) = C E(C)=C
-
E [ ∑ i = 1 n a i X i + b ] = ∑ i = 1 n a i E ( X i ) + b E[\sum_{i=1}^na_iX_i + b] = \sum_{i=1}^{n}a_iE(X_i) + b E[∑i=1naiXi+b]=∑i=1naiE(Xi)+b
-
如果 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn 相互独立,那么
E ( X 1 X 2 ⋯ X n ) = E ( X 1 ) E ( X 2 ) ⋯ E ( X n ) E(X_1X_2\cdots X_n) = E(X_1)E(X_2)\cdots E(X_n) E(X1X2⋯Xn)=E(X1)E(X2)⋯E(Xn)
-