代码(Python、Java)实现分组求和

9 篇文章 0 订阅
4 篇文章 0 订阅

测试数据(xx.txt):

a 1
a 2
b 3
c 4
d 5
c 6
b 7
a 8
x 9

一、SQL 分组求和

SELECT key, SUM(val)
FROM kv
GROUP BY key

二、Python 编码实现分组求和(pip install pandas)

import re

import pandas as pd
from matplotlib import pyplot as plt

lines = []
with open(r"pandas_group_sum.txt") as f:
    lines = f.read().splitlines()
print(len(lines))


p = re.compile(r'(?P<key>\S*)\s*(?P<val>\S*)')

kvs = []
for line in lines:
    m = p.match(line)
    if m:
        # print(line)
        kvs.append((m.group("key"), int(m.group("val"))))


df = pd.DataFrame(kvs, columns=["key", "val"])
# print(df.dtypes)

# 注:先创建空的`DataFrame`,再追加数据,该方式已过时。
# df = pd.DataFrame(columns=["key", "val"])
# for kv in kvs:
#     df = df.append({"key":kv[0], "val": int(float(kv[1]))}, ignore_index=True)


# 设置 `pandas` 打印展示效果
# 显示最大列数,None 为全部
pd.set_option('display.max_columns', None)
# 显示最大行数,None 为全部
pd.set_option('display.max_rows', None)
# 显示每列字段最大宽度
pd.set_option('max_colwidth', None)
# 显示行宽度
pd.set_option('display.width', None)

# 分组求和
df = df.groupby(["key"], as_index=True).sum().sort_values("val", ascending=False)

# 结果打印
print(df)

# 结果输出到 excel
# df.to_excel("结果.xlsx")

# 结果绘图
# 设置中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 坐标轴负号显示不正常及不能正常显示中文
plt.rcParams['axes.unicode_minus'] = False
# 默认为折线图
df.plot(kind='bar', title="统计图", figsize=(12, 8), legend=True, fontsize=18)

plt.show()

三、Java 编码实现分组求和 (import sh.joinery:joinery-dataframe 库)

① `pom.xml` 引入相关依赖:

<!-- joinery 科学计算 -->
<dependency>
	<groupId>sh.joinery</groupId>
	<artifactId>joinery-dataframe</artifactId>
	<version>1.10</version>
</dependency>

<dependency>
	<groupId>com.xeiam.xchart</groupId>
	<artifactId>xchart</artifactId>
	<version>2.3.1</version>
</dependency>

<dependency>
	<groupId>org.apache.poi</groupId>
	<artifactId>poi</artifactId>
	<version>4.1.2</version>
</dependency>
<!-- joinery 科学计算 END -->

 ② 代码实现

package org.kwok.joinery;

import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import joinery.DataFrame;

/**
 * 使用 sh.joinery:joinery-dataframe 库进行分组求和
 * 类似 Python pandas 库
 * @author Kwok
 * 2022-11-06
 */
public class Test_Joinery {

	public static void main(String[] args) throws Exception {
		
		System.out.println(Paths.get(Test_Joinery.class.getResource("Test_Joinery.txt").toURI()));
		
		List<String> lines = Files.readAllLines(Paths.get(Test_Joinery.class.getResource("Test_Joinery.txt").toURI()), Charset.defaultCharset());
		DataFrame<Object> df = new DataFrame<Object>("key", "value");
		
		
		Pattern p =Pattern.compile("(?<key>\\S*)\\s*(?<val>\\S*)");
		
		lines.stream().forEach(x -> {
			Matcher m = p.matcher(x);
			if(m.matches()) {
				// System.out.println(m.group("key"));
				// System.out.println(m.group("val"));
				df.append(Arrays.asList(m.group("key"), Double.valueOf(m.group("val"))));
			}
			
		});
		
		// 窗体展示
		df.groupBy("key").sum().sortBy("-value").show();
		
		// 打印 1000 行,默认 10 行
		System.out.println(df.groupBy("key").sum().sortBy("-value").toString(1000));
		
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值