已知量:
1,初始状态
2,状态的协方差矩阵(协方差矩阵:状态为多维向量,所以需要一个协方差矩阵来统计多维向量之间的关系)
3,测量协方差矩阵(同上)
4,粒子数
5,状态转移矩阵或者方程——x(k-1) -> x(k)
6,迭代次数
7,系统方差(可以理解为系统的误差)
8,测量方差(可以理解为测量的误差)
9,测量函数矩阵或方程(由x -> y)
求:
1,状态估计输出 ——初始为 0
步奏一:
a):根据初始状态产生随机初始的粒子——粒子初始化,一般用高斯随机分布产生
b):由初始状态根据测量函数方程计算初始测量量
步骤二:进入迭代期,一般为时间轴
a):由初始状态根据状态转移矩阵或者方程计算当前状态
b):由当前状态根据测量状态矩阵或方程计算当前观测值
c):根据粒子数生成粒子,步骤如下:
1):根据状态转移矩阵或者方程生成当前粒子
2):根据测量函数矩阵或者方程计算粒子当前观测值
3):计算似然函数值,得到粒子权重值(根据粒子当前观测值和系统当前观测值计算似然函数值(高斯计算))
d):归一化所有粒子的权值(这样所有粒子的权值在 0 -1 之间)
e):随机重要性重采样所有粒子,获得随机数大于在粒子权值叠加界限下的下标
f):依据下标重新将当前粒子采样赋值给新粒子
g):状态估计为新粒子的均值
demo on matlab:
%% SIR粒子滤波的应用,算法流程参见博客http://blog.csdn.net/heyijia0327/article/details/40899819
clear all
close all
clc
%% initialize the variables
x = 0.1; % initial actual state
x_N = 1; % 系统过程噪声的协方差 (由于是一维的,这里就是方差)
x_R = 1; % 测量的协方差
T = 75; % 共进行75次
N = 88; % 粒子数,越大效果越好,计算量也越大
%initilize our initial, prior particle distribution as a gaussian around
%the true initial value
V = 2; %初始分布的方差
x_P = rand(1,N); % 粒子
x_P2 = [];
% 用一个高斯分布随机的产生初始的粒子
for i = 1:N
x_P(i) = x + sqrt(V) * randn;
end
z_out = [x^2 / 20 + sqrt(x_R) * randn]; %实际测量值
x_out = [x]; %the actual output vector for measurement values.
x_est = [x]; % time by time output of the particle filters estimate
x_est_out = [x_est]; % the vector of particle filter estimates.
for t = 1:T
x = 0.5*x + 25*x/(1 + x^2) + 8*cos(1.2*(t-1)) + sqrt(x_N)*randn;
z = x^2/20 + sqrt(x_R)*randn;
for i = 1:N
%从先验p(x(k)|x(k-1))中采样
x_P_update(i) = 0.5*x_P(i) + 25*x_P(i)/(1 + x_P(i)^2) + 8*cos(1.2*(t-1)) + sqrt(x_N)*randn;
%计算采样粒子的值,为后面根据似然去计算权重做铺垫
z_update(i) = x_P_update(i)^2/20;
%对每个粒子计算其权重,这里假设量测噪声是高斯分布。所以 w = p(y|x)对应下面的计算公式
P_w(i) = (1/sqrt(2*pi*x_R)) * exp(-(z_update(i) - z)^2/(2*x_R)); %已知z,求z_update的概率
end
% 归一化.
P_w = P_w./sum(P_w); % for the later cumsum
%% Resampling这里改用histc函数,效果一样
[~, dd] = histc(rand(1,N), cumsum(P_w));% if rand > cumsun(P_w),,dd will be zero
x_P = x_P_update(:, dd + 1); % dd shuld be from 1,,but what if dd is the dd is the max of the dd,, filter the new sampling
%状态估计,重采样以后,每个粒子的权重都变成了1/N
x_est = mean(x_P);
% Save data in arrays for later plotting
x_out = [x_out x]; %pingjie x_out
z_out = [z_out z];
x_est_out = [x_est_out x_est];
end
t = 0:T;
figure(1);
clf
plot(t, x_out, '.-b', t, x_est_out, '-.r','linewidth',3);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('time step'); ylabel('flight position');
legend('True flight position', 'Particle filter estimate');