m i n ∑ j = 1 N ∑ k = 1 K x 0 j k . . . . . . ( 1 ) s . t . ∑ k = 1 K ∑ i = 0 , i = ̸ j N x i j k = 1 , ∀ j ∈ { 1 , 2 , . . . , N } . . . . . . ( 2 ) ∑ j = 1 N x 0 j k ≤ 1 ∀ k ∈ { 1 , 2 , . . , K } . . . . . . ( 3 ) ∑ i = 0 , i = ̸ j N x i j k = ∑ i = 0 , i = ̸ j N x j i k , ∀ j ∈ { 0 , 1 , 2 , . . , N } , ∀ k ∈ { 1 , 2 , . . . , K } . . . . . . ( 4 ) ∑ i = 0 N ∑ j = 1 , j = ̸ i N d j x i j k ≤ C , ∀ k ∈ { 1 , 2 , . . . , K } . . . . . . ( 5 ) ∑ k = 1 K ∑ i ∈ S ∑ j ∈ S , i = ̸ j x i j k ≤ ∣ S ∣ − 1 , ∀ S ⊆ { 1 , 2 , . . . , N } . . . . . . ( 6 ) x i j k ∈ { 0 , 1 } , ∀ i , j ∈ { 0 , 1 , 2 , . . , N } , ∀ k ∈ { 1 , 2 , . . . , K } . . . . . ( 7 ) min\sum\limits_{j=1}^{N}\sum\limits_{k=1}^{K}x_{0jk} ......(1)\\ s.t. \sum\limits_{k=1}^{K}\sum_{i=0,i =\not j}^{N}x_{ijk}=1,\quad \forall j \in \{1,2,...,N\}......(2)\\ \sum_{j=1}^{N}x_{0jk}\leq 1 \quad\forall k \in \{1,2,..,K\}......(3)\\ \sum_{i=0,i=\not j}^{N}x_{ijk}=\sum_{i=0,i=\not j}^{N}x_{jik},\quad \forall j \in \{0,1,2,..,N\},\forall k \in \{1,2,...,K\}......(4)\\ \sum_{i=0}^{N}\sum_{j=1,j=\not i}^{N}d_j x_{ijk}\leq C,\quad \forall k \in \{1,2,...,K\}......(5)\\ \sum_{k=1}^{K}\sum_{i \in S}\sum_{j\in S,i=\not j}x_{ijk}\leq |S|-1,\quad \forall S \subseteq \{1,2,...,N\}......(6)\\ x_{ijk} \in \{0,1\},\quad \forall i,j \in \{0,1,2,..,N\},\forall k \in \{1,2,...,K\}.....(7) minj=1∑Nk=1∑Kx0jk...
VRP算法模型
最新推荐文章于 2025-04-25 08:58:26 发布