11个AI提示词,DeepSeek快速完成一篇SCI论文

在这里插入图片描述

大家好,我是哪吒。今天给大家分享11个AI提示词,通过DeepSeek快速完成一篇SCI论文。

在科学研究中,撰写高质量SCI论文始终是学者必须攻克的重要难题。论文从选题到投稿的各阶段均充斥着多重复杂性和不确定性,因此亟需建立系统化、模块化的写作策略。基于DeepSeek核心框架,本文提出了一套操作性强、逻辑严谨的写作指南。

本文细致解析了标题、摘要、关键词、引言、技术背景、材料与方法、结果与讨论等关键部分的构成要点,并推荐了当前主流的学术辅助工具,以期优化论文撰写流程、提升学术表达的精准性。借助DeepSeek辅助写作不仅能规范论文结构,还能增强语言严谨性和逻辑性,从而显著提高投稿成功率。

1、标题

角色:你将扮演一名拥有10年从业经验的SCI论文专家
背景:主题为【AI在医疗与生物信息学中的应用】的SCI论文摘要
目的:包含关键词【技术】、【应用场景】、【目标对象】,突出创新点【核心突破点】
返回:符合SCI论文的标题风格

注意:为精简文章内容,下面提示词样例采用”高效提示词模板“,默认以下角色和背景。


角色:你将扮演一名拥有10年从业经验的SCI论文专家
背景:主题为【AI在医疗与生物信息学中的应用】的SCI论文摘要
目的:
返回:500字,中文

2、摘要

目的:包含背景(【研究领域】的现状与挑战)、目的(技术目标)、方法(设计与验证)、结果(【关键指标】的提升)和结论([研究意义])。

3、关键词

目的:包含【研究领域】、【技术手段】、【应用场景】、【研究意义】。
返回:5-6个关键词

4、引言

目的:包含【研究领域】的现状与挑战、【技术手段】的应用与局限、创新点、研究意义

5、技术背景

目的:包含发展概况、技术栈、原理与设计理念
返回:部分内容以表格的形式输出

6、材料与方法

目的:详细说明研究所采用的实验设计、数据采集和分析方法,确保研究的可重复性。
返回:部分内容以表格的形式输出

7、结果

目的:概括主要发现,强调研究贡献,并提出未来研究的方向或建议。
返回:部分内容以表格的形式输出

8、讨论

目的:分析其优势与机制、与现有研究的对比、本研究的局限性与未来方向
返回:部分内容以表格的形式输出

9、结论

目的:【技术手段】的显著效果、该研究的潜在应用价值、对未来研究的意义

10、参考文献

目的:列出论文中引用的所有文献,确保信息来源的可追溯性。

11、附录

目的:补充正文中未详细展开的数据、公式、程序代码等内容。

综上所述,通过整合最新研究动态与工具应用,为研究生和初级研究者提供了一套前沿且实用的学术写作参考,有助于高效完成论文撰写并提升学术影响力。

12、工具推荐

满血DeepSeek r1

很多人想重试本地部署DeepSeek,对接DeepSeek api,对于大多数小伙伴而言,门槛还是过高,即使部署成功,也会因为电脑配置等原因,只能部署 7B、8B 的版本,不是满血版的 671B 的 deepseek,体验不佳。

部署完,还需要不断地氪金才能使用,对接满血版的 671B 的 deepseek挺烧钱的,我现在每天要花费两三百的deepseek api费用,才实现了满血版的 671B 的 deepseek。

下面分享给大家:

推荐谷歌浏览器访问:满血DeepSeek R1、不降智ChatGPT4o、o1、o3-mini-high

无需魔法、个人独享、同时支持手机/电脑。

在这里插入图片描述

生成3000个具体的提示词列表是一项复杂且庞大的任务,超出了当前交互环境的能力范围。然而,可以提供一种方法论以及Python脚本示例用于自动生成大量与DeepSeek相关的提示词。 ### 方法论 为了创建这些提示词,可以从以下几个方面入手: - **领域特定术语**:基于DeepSeek的应用场景和技术背景构建关键词汇表。 - **功能描述**:围绕模型的功能特性设计问题或陈述句作为输入模板。 - **应用场景**:考虑实际应用案例中的需求和挑战形成对话情景。 - **用户反馈**:收集潜在用户的常见查询并转化为有效的提示形式。 通过上述角度出发,利用自然语言处理技术自动化扩展提示集合成为可能。 ### Python 脚本实例 下面展示一段简化版的代码片段,该程序能够根据预定义的主题类别随机组合生成一定数量的独特提示短语。 ```python import random from itertools import product def generate_prompts(themes, verbs, objects, count=10): themes_list = ["关于 " + theme for theme in themes] verb_phrases = [verb.capitalize() + ' 的' for verb in verbs] object_terms = ['方式', '解决方案', '建议'] + list(objects) combinations = list(product(themes_list, verb_phrases, object_terms)) prompts = [] while len(prompts) < min(count, len(combinations)): combination = random.choice(combinations) prompt = ''.join(combination).strip() if prompt not in prompts: prompts.append(prompt) return prompts[:count] themes = ['AI伦理学', '机器学习优化'] verbs = ['探讨', '寻找', '理解'] objects = {'算法公平性': [], '数据隐私保护措施': []} prompts = generate_prompts(list(themes), verbs, dict(objects), 3000) for i, p in enumerate(prompts[:5]): print(f"{i+1}. {p}") ``` 此代码仅作为一个概念验证工具,并未真正实现3000条记录输出;实际上可以根据具体业务逻辑调整参数`themes`, `verbs`, 和 `objects` 来适应不同的主题方向[^1]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哪 吒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值