国自然基金课题写作——deepseek提示词
-
请从国家自然科学基金的资助导向和优先领域出发,结合[我的研究领域]的最新进展和热点问题,凝练3-5个具有重要科学意义和潜在应用价值的关键科学问题,并简要阐述每个科学问题的研究价值和创新潜力。
-
针对[我拟解决的关键科学问题],请辅助我进行高水平、前沿性的文献综述,重点分析国内外研究现状、已有的突破和局限性,并指出本研究的切入点和潜在创新之处,突出研究的必要性和紧迫性。
-
请帮助我构建一个逻辑严谨、环环相扣的研究思路框架,从科学问题的提出、研究目标的设定、研究内容的分解、研究方法的选择到预期成果的产出,确保整个研究方案的逻辑自洽性和完整性,并符合国自然申请书的逻辑结构。
-
请针对[我的研究方案]进行可行性评估,从理论基础、技术路线、实验条件、研究团队等方面,分析可能存在的风险和挑战,并提出切实可行的应对策略,增强研究方案的可行性和可信度。
-
请从国自然基金评审专家的角度,审视我的申请书摘要,指出其中可能存在的表述不清、重点不突出、创新性不明显等问题,并给出具体修改建议,提升摘要的吸引力和信息量。
-
请辅助我优化申请书的“立项依据”部分,使其更具说服力,重点突出科学问题的学术价值、应用前景和国家需求,以及本研究的理论意义和实践意义。
-
请帮助我细化和完善“研究目标”和“研究内容”,确保研究目标明确、具体、可考核,研究内容紧密围绕研究目标,并具有清晰的逻辑层次和递进关系,避免研究目标空泛、研究内容发散。
-
请针对[我的研究方法和技术路线]进行专业性评估,分析其先进性、合理性和可行性,并与国内外同领域的常用方法进行比较,突出本研究方法和技术路线的优势和创新之处,并考虑是否符合国自然对“研究方法先进、技术路线合理”的期望。
-
请辅助我凝练和突出申请书的“创新之处”,从科学发现、技术发明、理论创新、方法创新等多个维度,清晰、简洁、有力地阐述本研究的独特性和原创性贡献,避免创新点不明确、不突出。
-
请帮助我分析和总结“研究基础”,重点突出与本项目相关的研究积累和优势,例如已有的研究成果、实验条件、团队优势等,并提供佐证材料的组织建议,增强申请书的竞争力,体现申请者具备完成项目的能力和条件。
-
请辅助我撰写“预期成果”部分,使其更具吸引力和说服力,明确预期成果的形式(论文、专利、专著、报告等)和水平,并论证其科学价值、应用价值和社会经济效益,避免预期成果空泛、不具体。
-
请从评审专家的角度,评估我的申请书题目,是否能够准确、简洁、鲜明地概括研究主题和核心内容,并给出优化建议,确保题目能够有效传递研究信息,吸引评审专家的关注。
-
请辅助我检查申请书的逻辑结构和语言表达,确保逻辑清晰、层次分明、语言精炼、专业规范,避免出现逻辑跳跃、表达冗余、专业术语使用不当等问题,提升申请书的可读性和专业性。
-
请针对[我的研究领域]近5年获得资助的国自然基金项目进行数据分析,总结该领域的研究热点、资助趋势和评审关注点,并结合我的申请书内容,提出针对性的改进建议,以提高申请书的命中率。
-
请模拟国自然基金评审专家,基于[我提供的申请书草稿],进行预评审,并给出详细的评审意见,包括优点、缺点、创新性评价、可行性评价、研究基础评价和改进建议,帮助我从评审角度发现问题并进行改进,提升申请书质量。
-
请帮助我优化申请书的“关键词”,使其更准确、更全面地反映研究主题和内容,并符合学科分类代码的要求,方便评审专家快速了解研究方向和领域,提升申请书被准确送审的可能性。
-
请辅助我撰写“研究方案”部分,使其更具操作性和可执行性,详细描述研究步骤、时间节点、关键环节和质量控制措施,避免研究方案过于笼统、缺乏细节。
-
请帮助我分析[与本项目相关的国内外重要研究团队和研究机构],并评估本研究在国际/国内同领域中的位置和水平,突出研究的特色和优势,避免研究方向重复、缺乏特色,体现研究的学术价值和竞争力。
-
请辅助我撰写申请书的“摘要”和“关键词”,使其符合国自然基金的规范要求,并能够简洁、准确、吸引人地概括研究的核心内容和创新点,提升申请书的阅读兴趣和评审效率。
-
请从伦理和学术规范的角度,审查我的申请书,确保研究内容和方法符合伦理要求,引用规范,避免学术不端行为,并检查申请书中是否存在敏感信息或泄密风险,确保申请书的合规性和安全性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。