【数论/不等式】自编题1

已知数列 b n b_n bn 的第 n n n 项等于 n n n 所有正整数因数的平方和,如 b 2 = 1 2 + 2 2 = 5 , b 4 = 1 2 + 2 2 + 4 2 = 21 b_2=1^2+2^2=5,b_4=1^2+2^2+4^2=21 b2=12+22=5,b4=12+22+42=21;数列 T n T_n Tn 的第 n n n 项等于 n n n 因数个数,如 T 4 = 3 T_4 = 3 T4=3。请回答以下小题(12分)

(1) b 6 = b_6 = b6=___________, T 12 = T_{12}= T12=_____________(2分)
(2)证明: b n ≥ n T n b_n \geq nT_n bnnTn(4分)

(3)证明 b n < 7 4 n 2 b_n < \dfrac{7}{4}n^2 bn<47n2(6分)

解答:
(1) 50 , 5 50,5 50,5
(2)对于正整数 n n n,若 a a a 为其因数, n a \dfrac{n}{a} an 也是其因数,下文称这两个因数为“一对因数”。
a 2 + ( n a ) 2 ≥ 2 × a × n a = 2 n a^2+(\dfrac{n}{a})^2\geq 2 \times a \times \dfrac{n}{a}=2n a2+(an)22×a×an=2n

也就是说,一对因数的平方和必然不小于 2 n 2n 2n
n n n 不为完全平方数,则有 T n 2 \dfrac{T_n}{2} 2Tn 对因数, b n ≥ T n 2 × 2 n = T n × n b_n \geq \dfrac{T_n}{2} \times 2n=T_n\times n bn2Tn×2n=Tn×n
n n n 不为完全平方数,则有 T n − 1 2 \dfrac{T_n-1}{2} 2Tn1 对因数, b n ≥ T n − 1 2 × 2 n + n = T n × n b_n \geq \dfrac{T_n-1}{2} \times 2n + n=T_n\times n bn2Tn1×2n+n=Tn×n

(3)不妨记正整数 n n n 因数从小到大依次为 c 1 , c 2 … c T n c_1,c_2\dots c_{T_n} c1,c2cTn,容易发现对于任意满足 1 ≤ x ≤ T n 1 \leq x \leq T_n 1xTn 的正整数 x x x 均有 c x c T n − x = n c_x c_{T_n-x}=n cxcTnx=n(即 c x c_x cx c T n − x c_{T_n-x} cTnx 为一对因数)。

那么, n n n 的因数从小到大可以重新表述成 n c T x , n c T n − 1 … n c 1 \dfrac{n}{c_{T_x}},\dfrac{n}{c_{T_n-1}}\dots \dfrac{n}{c_{1}} cTxn,cTn1nc1n

只要证明 ( n c T x ) 2 + ( n c T n − 1 ) 2 ⋯ + ( n c 1 ) 2 < 7 4 n 2 (\dfrac{n}{c_{T_x}})^2+(\dfrac{n}{c_{T_n-1}})^2\dots +(\dfrac{n}{c_{1}})^2<\dfrac{7}{4}n^2 (cTxn)2+(cTn1n)2+(c1n)2<47n2

只要证明 ( 1 c T x ) 2 + ( 1 c T n − 1 ) 2 ⋯ + ( 1 c 1 ) 2 < 7 4 (\dfrac{1}{c_{T_x}})^2+(\dfrac{1}{c_{T_n-1}})^2\dots +(\dfrac{1}{c_{1}})^2<\dfrac{7}{4} (cTx1)2+(cTn11)2+(c11)2<47

考虑证明一个更强的结论 1 1 2 + 1 2 2 + ⋯ + 1 n 2 < 7 4 \dfrac{1}{1^2}+\dfrac{1}{2^2}+\dots+\dfrac{1}{n^2}<\dfrac{7}{4} 121+221++n21<47,若该命题成立,原命题自然成立。

由于
1 1 2 + 1 2 2 + ⋯ + 1 n 2 < 1 1 2 + 1 2 2 − 1 + 1 3 2 − 1 + ⋯ + 1 n 2 − 1 \dfrac{1}{1^2}+\dfrac{1}{2^2}+\dots+\dfrac{1}{n^2}<\dfrac{1}{1^2}+\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+\dots+\dfrac{1}{n^2-1} 121+221++n21<121+2211+3211++n211

对不等号右边列项,得

1 1 2 + 1 2 2 + ⋯ + 1 n 2 < 1 + 1 2 ( 1 + 1 2 − 1 n − 1 n + 1 ) < 7 4 \dfrac{1}{1^2}+\dfrac{1}{2^2}+\dots+\dfrac{1}{n^2}<1+\dfrac{1}{2}(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1})<\dfrac{7}{4} 121+221++n21<1+21(1+21n1n+11)<47

故新命题成立,则原命题成立。

感谢浏览。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值