已知数列 b n b_n bn 的第 n n n 项等于 n n n 所有正整数因数的平方和,如 b 2 = 1 2 + 2 2 = 5 , b 4 = 1 2 + 2 2 + 4 2 = 21 b_2=1^2+2^2=5,b_4=1^2+2^2+4^2=21 b2=12+22=5,b4=12+22+42=21;数列 T n T_n Tn 的第 n n n 项等于 n n n 因数个数,如 T 4 = 3 T_4 = 3 T4=3。请回答以下小题(12分)
(1)
b
6
=
b_6 =
b6=___________,
T
12
=
T_{12}=
T12=_____________(2分)
(2)证明:
b
n
≥
n
T
n
b_n \geq nT_n
bn≥nTn(4分)
(3)证明 b n < 7 4 n 2 b_n < \dfrac{7}{4}n^2 bn<47n2(6分)
解答:
(1)
50
,
5
50,5
50,5
(2)对于正整数
n
n
n,若
a
a
a 为其因数,
n
a
\dfrac{n}{a}
an 也是其因数,下文称这两个因数为“一对因数”。
a
2
+
(
n
a
)
2
≥
2
×
a
×
n
a
=
2
n
a^2+(\dfrac{n}{a})^2\geq 2 \times a \times \dfrac{n}{a}=2n
a2+(an)2≥2×a×an=2n
也就是说,一对因数的平方和必然不小于
2
n
2n
2n
若
n
n
n 不为完全平方数,则有
T
n
2
\dfrac{T_n}{2}
2Tn 对因数,
b
n
≥
T
n
2
×
2
n
=
T
n
×
n
b_n \geq \dfrac{T_n}{2} \times 2n=T_n\times n
bn≥2Tn×2n=Tn×n
若
n
n
n 不为完全平方数,则有
T
n
−
1
2
\dfrac{T_n-1}{2}
2Tn−1 对因数,
b
n
≥
T
n
−
1
2
×
2
n
+
n
=
T
n
×
n
b_n \geq \dfrac{T_n-1}{2} \times 2n + n=T_n\times n
bn≥2Tn−1×2n+n=Tn×n
(3)不妨记正整数 n n n 因数从小到大依次为 c 1 , c 2 … c T n c_1,c_2\dots c_{T_n} c1,c2…cTn,容易发现对于任意满足 1 ≤ x ≤ T n 1 \leq x \leq T_n 1≤x≤Tn 的正整数 x x x 均有 c x c T n − x = n c_x c_{T_n-x}=n cxcTn−x=n(即 c x c_x cx 和 c T n − x c_{T_n-x} cTn−x 为一对因数)。
那么, n n n 的因数从小到大可以重新表述成 n c T x , n c T n − 1 … n c 1 \dfrac{n}{c_{T_x}},\dfrac{n}{c_{T_n-1}}\dots \dfrac{n}{c_{1}} cTxn,cTn−1n…c1n
只要证明 ( n c T x ) 2 + ( n c T n − 1 ) 2 ⋯ + ( n c 1 ) 2 < 7 4 n 2 (\dfrac{n}{c_{T_x}})^2+(\dfrac{n}{c_{T_n-1}})^2\dots +(\dfrac{n}{c_{1}})^2<\dfrac{7}{4}n^2 (cTxn)2+(cTn−1n)2⋯+(c1n)2<47n2
只要证明 ( 1 c T x ) 2 + ( 1 c T n − 1 ) 2 ⋯ + ( 1 c 1 ) 2 < 7 4 (\dfrac{1}{c_{T_x}})^2+(\dfrac{1}{c_{T_n-1}})^2\dots +(\dfrac{1}{c_{1}})^2<\dfrac{7}{4} (cTx1)2+(cTn−11)2⋯+(c11)2<47
考虑证明一个更强的结论 1 1 2 + 1 2 2 + ⋯ + 1 n 2 < 7 4 \dfrac{1}{1^2}+\dfrac{1}{2^2}+\dots+\dfrac{1}{n^2}<\dfrac{7}{4} 121+221+⋯+n21<47,若该命题成立,原命题自然成立。
由于
1
1
2
+
1
2
2
+
⋯
+
1
n
2
<
1
1
2
+
1
2
2
−
1
+
1
3
2
−
1
+
⋯
+
1
n
2
−
1
\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dots+\dfrac{1}{n^2}<\dfrac{1}{1^2}+\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+\dots+\dfrac{1}{n^2-1}
121+221+⋯+n21<121+22−11+32−11+⋯+n2−11
对不等号右边列项,得
1 1 2 + 1 2 2 + ⋯ + 1 n 2 < 1 + 1 2 ( 1 + 1 2 − 1 n − 1 n + 1 ) < 7 4 \dfrac{1}{1^2}+\dfrac{1}{2^2}+\dots+\dfrac{1}{n^2}<1+\dfrac{1}{2}(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1})<\dfrac{7}{4} 121+221+⋯+n21<1+21(1+21−n1−n+11)<47
故新命题成立,则原命题成立。
感谢浏览。