考虑以 A A A 为原点,射线 A E AE AE 为 y y y 轴正半轴建立平面直角坐标系。有 N ( 10 2 , 0 ) , M ( 10 , 10 ) N(10\sqrt{2},0),M(10,10) N(102,0),M(10,10)
不妨令 P 1 P_1 P1 为 P P P 初始点, P x P_x Px 为 P P P 闪烁点。
容易发现, ∠ P 1 A P x = 45 ∠P_1AP_x = 45 ∠P1APx=45,考虑记 P 1 ( a , 10 ) P_1(a,10) P1(a,10)。
不妨做 P 1 Q ⊥ A P 1 P_1Q ⊥AP_1 P1Q⊥AP1 交 A P x AP_x APx 延长线于 Q Q Q。
故 Q ( 10 + a , 10 − a ) Q(10+a,10-a) Q(10+a,10−a) … \dots … 考场写到这
直线 A Q AQ AQ 解析式为 y = 10 − a 10 + a x y = \dfrac{10-a}{10+a}x y=10+a10−ax
记 P x ( m , n ) P_x(m,n) Px(m,n),由 P x M = P x N P_xM=P_xN PxM=PxN
联立方程
{ n = 10 − a 10 + a m ( 1 ) ( m − 10 ) 2 + ( n − 10 ) 2 = ( m − 2 1 0 ) 2 + n 2 ( 2 ) a 2 + 1 0 2 = m 2 + n 2 ( 3 ) \begin{cases}n = \dfrac{10-a}{10+a}m (1)\\ (m-10)^2+(n-10)^2= (m-2\sqrt10)^2+n^2(2)\\ a^2+10^2= m^2+n^2(3)\end{cases} ⎩ ⎨ ⎧n=10+a10−am(1)(m−10)2+(n−10)2=(m−210)2+n2(2)a2+102=m2+n2(3)
… \dots … 脑子想到这,觉得太难没想下去了!!!!!!!!!
展开 (2),有 ( 2 − 1 ) m = n ( 4 ) (\sqrt2-1)m=n(4) (2−1)m=n(4)
比较 (4) 与 (1),有 2 − 1 = 10 − a 10 + a \sqrt2-1= \dfrac{10-a}{10+a} 2−1=10+a10−a
故 a = 10 2 − 10 … a=10\sqrt2-10 \dots a=102−10… 8分。