机器学习-支持向量机的数学讨论

本文详细探讨了支持向量机(SVM)的数学原理,包括其特点、如何求解点到分割超平面的距离、如何评估分类效果、目标函数的定义以及标准和对偶形式的推导。SVM通过最大化间隔来实现较好的泛化能力和稳健性,文中还介绍了允许分类错误的SVM以及非线性SVM的推导,阐述了核函数在解决非线性问题中的作用。
摘要由CSDN通过智能技术生成

1 支持向量机的特点:

  • 泛化错误率较低,计算开销不大,结果容易解释;
  • 对于参数和核函数选择敏感
  • 可以适用于标称型数据和数值型数据

2 SVM解释如下:

  • 对于二分类问题,寻找其线性可分的可能性。如果能够实现分割,则称为分割超平面。具体的,对于N维数据,需要构建一个(N-1)维的超平面。
  • 由于超平面的构建的多样性,可以引入支持向量的概念,来量化分割超平面的好坏,从而定义超平面两侧的点到超平面的最小垂直距离
  • 将超平面两侧点到超频面的最小垂直距离称为间隔,希望间隔越小越好,这样能够实现较高的数据容差,保证了分类器的稳健。而支持向量就是离分隔超平面最近的点。

3 如何求解点到分割超平面的距离?

  • 为了研究分割超平面,首先需要给出其数学形式,最简单的N维数据分割超平面形式为 w⃗ Tx⃗ +b=0 w → T x → + b = 0 ,其中 w⃗  w →
    N*1向量, x⃗  x → 为N*1向量,而b为标量。
  • 对于任意一点A,坐标记为 (x1,x2,...,xN) ( x 1 , x 2 , . . . , x N ) ,距离上述分割超平面的距离为 |w⃗ TA⃗ +b|||w⃗ || | w → T A → + b | | | w → | | 。数学证明可以采用向量方式,初等数学即可。

4 如何评价分类情况的好坏

  • 对于计算得到的超平面方程,可以将测试点带入,这样可以得到一个数据,具体来说,代入点 u⃗  u → ,计算 y=w⃗ Tu⃗ +b y = w → T u → + b 。然后将结果输入到一个二分类的非线性函数中,得到映射后的分类情况。
  • 支持向量机使用的非线性函数是采用label=+-1映射的情况,因此可以使用 label(w⃗ Tu⃗ +b) l a b e l ( w → T u → + b ) ,这样当结果较大时,则表明点u在离超平面很远的地方,间距较大。当然,如果分类错误,则会产生一个负数,负数越大,证明分类的误差越大。

5 如何定义优化的目标函数

  • 根据上述分析,可以定义出一个优化问题: 存在参数(向量w和标量b),需要步骤4的表达式,也就是 label(w⃗ Tu⃗ +b) l a b e l ( w → T u → + b ) 尽量大。由于存在多个u,则可以定义评价函数。
  • 问题表述为(较难求解)
    argmaxw⃗ ,b{ min(label(w⃗ Tu⃗ +b)||w⃗ ||)} arg ⁡ max w → , b { min ( l a b e l ∗ ( w → T u → + b ) | | w → | | ) }

6 标准形式的推导

  • 上式较难求解,可以采用等效变换的方式。首先,向量 w⃗  w → 和标量 b b 可以同时放大或者缩小k倍,这并不会影响上述求解值(向量平移性质有关)。因此,可以利用该条件,定义 l a b e l ( w T u + b ) >= 1 ,其中支持向量能够使得等式成立。如果满足该条件,那么原问题也成立。当然,这是假设分类均正确
  • 接下来,对于分数形式的优化,可以采用最小化分子项和最大化分母项来进行,分子项最小为1,因此该式可以转换为如下的优化问题:
    argminw⃗ ,b1||w⃗ || arg ⁡ min w → , b 1 | | w → | |
  • 为了能够求解上一个优化问题,结合二次规划算法,可以最终将等式转化如下:
    argminw⃗ ,b12||w⃗ ||2,st.yi(w⃗ Txi+b)>=1 arg ⁡ min w → , b 1 2 | | w → | | 2 , s t . y i ( w → T x i → + b ) >= 1
  • 对于上述问题,可以利用凸二次优化方法进行求解。QP方法 quadratic programming

7 对偶形式推导

7.1 拉格朗日乘子法: 将带约束的情况转换为无约束情况。
  • 对于等式约束的拉格朗日乘子法,其原理为(可能的一种理解方法):
    1. 对于 minf(x⃗ ),st.wiTx⃗ +bi=0,i=1...N min f ( x → ) , s t . w i → T x → + b i = 0 , i = 1... N ,可以转换为无约束的等式 L(x⃗ ,αi)=f(x⃗ )+i=1 to Nαi(wiTx⃗ +bi) L ( x → , α i ) = f ( x → ) + ∑ i = 1   t o   N α i ( w i → T x → + b i )
    2. 对于上式L,求解对于x的偏导项,则可以得到x关于 αi α i 的表示,x项从 f/x ∂ f / ∂ x 产生,而 αi α i 从后面的项产生;
    3. 将x关于 αi α i 的表示带入约束等式中,可以得到 αi α i 的值,该值能够保证约束等式成立,也就是说, L(x,αi)=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值