跌倒检测和识别1:跌倒检测数据集(含下载链接)

本文提供了两个高质量的跌倒检测数据集(Fall-Down-Det-v1和v2)以及三个分类数据集(Fall-Down-Cls-v1至v3),总计约30000张图片,适合深度学习模型开发。此外,还分享了使用Pytorch的YOLOv5实现跌倒检测的教程和Android实时跌倒检测的源码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 跌倒检测和识别1:跌倒检测数据集(含下载链接)

目录

 跌倒检测和识别1:跌倒检测数据集(含下载链接)

1. 前言

2. 跌倒姿态:站立-弯腰(蹲下)-躺下

3. 跌倒检测数据集:

(1)Fall-Down-Det-v1

(2)Fall-Down-Det-v2

4. 跌倒分类数据集

(1)Fall-Down-Cls-v1

(2)Fall-Down-Cls-v2

(3)Fall-Down-Cls-v3

5. 跌倒检测数据集下载

6. Pytorch实现跌倒检测识别

7. Android实现跌倒检测识别


1. 前言

这是项目《跌倒检测和识别》系列文章之《跌倒检测数据集(含下载链接)》。

网上有很多跌倒(摔跤,躺下)检测的数据,在CSDN下载那一搜一大堆,但下载下来,真是不尽人意,质量参差不齐,说多了都是泪呀,都是血泪史的教训。很多数据都十分不完整,要么只标注跌倒的人体,要么只标注站立的人体,标注格式还不统一。

本篇,我们将分享几个可用于跌倒检测和分类识别的数据集;跌倒检测数据集(Fall-Down-Detection-Dataset)收集了两个:Fall-Down-Det-v1和Fall-Down-Det-v2,总共约4000张图片;跌倒分类数据集(Fall-Down-Classification-Dataset)收集了三个:分别为Fall-Down-Cls-v1,Fall-Down-Cls-v2和Fall-Down-Cls-v3,总共26000+张图片。数据质量较高,可用于深度学习跌倒检测和识别的项目模型算法开发。

【尊重原则,转载请注明出处】 https://blog.csdn.net/guyuealian/article/details/130184256


  更多项目《跌倒检测和识别》系列文章请参考:

  1. 跌倒检测和识别1:跌倒检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/130184256
  2. 跌倒检测和识别2:YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/130250738

  3. 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250824

  4. 跌倒检测和识别4:C++实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250838


2. 跌倒姿态:站立-弯腰(蹲下)-躺下

在跌倒检测和识别算法开发中,我们需要定义跌倒的行为状态,项目将跌倒状态分为三个姿态,分别为:up(站立),bending(弯腰,蹲下)和down(躺下),为了便于大家理解,这里给出三个姿态的图示说明

  • up:如人体站立,走路等姿态

  • bending:如人体弯腰,蹲下,坐下等姿态

  • down:如躺下,趴着,平躺等姿态


3. 跌倒检测数据集:

项目已经收集了两个跌倒检测数据集(Fall-Down-Detection-Dataset),Fall-Down-Det-v1和Fall-Down-Det-v2,总共约4000张图片

(1)Fall-Down-Det-v1

Fall-Down-Det-v1跌倒检测数据集,原始图片主要来源于监控视频,大部分是室内房间等场景,十分符合实际的业务场景。

总共约3400张图片,分为两个子集:训练集(Train)和测试集(Test);其中训练集(Train)总数超过3253,测试集(Test)总数210张​​​​,数据标注格式统一为VOC数据格式,注了人体框的三个姿态:up(站立),bending(弯腰,蹲下)和down(躺下),可直接用于深度学习目标检测模型训练。

(2)Fall-Down-Det-v2

Fall-Down-Det-v2跌倒检测数据集,原始图片主要来源于网络爬虫图片检索,部分也是整合网上的数据,背景比较复杂,图片人数较多,可作为通用场景的跌倒检测数据

总共553张图片,数据标注格式统一为VOC数据格式,所有数据均已经标注了人体检测框,标注了人体框的三个姿态up(站立),bending(弯腰,蹲下)和down(躺下),可直接用于深度学习目标检测模型训练。


4. 跌倒分类数据集

项目已经收集了三个跌倒分类数据集(Fall-Down-Classification-Dataset),分别为Fall-Down-Cls-v1,Fall-Down-Cls-v2和Fall-Down-Cls-v3,总共26000+张图片

(1)Fall-Down-Cls-v1

Fall-Down-Cls-v1跌倒分类数据集,是在Fall-Down-Det-v1跌倒检测数据集上,裁剪人体区域图片,制作的跌倒分类数据集,裁剪的图片存放在up(站立),bending(弯腰,蹲下)和down(躺下)三个文件夹中,增强泛化性,每个人体框区域分别按照外扩1.0,1.1和1.2倍裁剪三张图片;分为两个子集:训练集(Train)和测试集(Test);其中训练集(Train)总数超过9000+,测试集(Test)总数600张;所有照片都已经按照其所属类别存放于各自的文件夹下,可直接用于深度学习分类模型训练。

bendingdownup

  

(2)Fall-Down-Cls-v2

Fall-Down-Cls-v2跌倒分类数据集,是在Fall-Down-Det-v2跌倒检测数据集上,裁剪人体区域图片,制作的跌倒分类数据集,裁剪的图片存放在up(站立),bending(弯腰,蹲下)和down(躺下)三个文件夹中,增强泛化性,每个人体框区域分别按照外扩1.0,1.1和1.2倍裁剪三张图片,总共6000+张图片;所有照片都已经按照其所属类别存放于各自的文件夹下,可直接用于深度学习分类模型训练。

bendingdownup

(3)Fall-Down-Cls-v3

Fall-Down-Cls-v3跌倒分类数据集,原始图片主要来源于网络爬虫图片检索,整合网上的现有的跌倒分类数据,并进行了数据清洗。分为两个子集:训练集(Train)和测试集(Test);其中训练集(Train)总数超过8000+,测试集(Test)总数700+;所有照片都已经按照其所属类别存放于各自的文件夹下,可直接用于深度学习分类模型训练。

bendingdownup


5. 跌倒检测数据集下载

如需下载项目源码,请WX关注【AI吃大瓜】,回复【跌倒检测】即可下载

项目源码包含内容:

  • 跌倒检测数据集:Fall-Down-Det-v1和Fall-Down-Det-v2,总共约4000张图片
  • 跌倒分类数据集:Fall-Down-Cls-v1,Fall-Down-Cls-v2和Fall-Down-Cls-v3,总共26000+张图片


6. Pytorch实现跌倒检测识别

参考文章:跌倒检测和识别2《YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/130250738

7. Android实现跌倒检测识别

参考文章:跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250824

     

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python Git 工具,因为这些对于获取源码管理依赖项至关重要。 #### 安装必要的软件包支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI吃大瓜

尊重原创,感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值