跌倒检测和识别2:YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码)

跌倒检测和识别2:YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码)

目录

跌倒检测和识别2:YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码)

1. 前言

2. 跌倒检测数据集说明

(1)跌倒检测数据集

(2)自定义数据集

3. 基于YOLOv5的跌倒检测模型训练

(1)YOLOv5安装 

(2)准备Train和Test数据

(3)配置数据文件

(4)配置模型文件

(5)重新聚类Anchor(可选)

(6)开始训练

(7)可视化训练过程

(8)常见的错误

4. Python版本跌倒检测效果

5. Android版本跌倒检测和识别效果

6.项目源码下载


1. 前言

这是项目《跌倒检测和识别》系列之《YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码)》;项目基于开源YOLOv5项目,实现一个高精度的跌倒检测算法(Fall Down Detection),可实现检测人体的up(站立),bending(弯腰,蹲下)和down(躺下,摔倒)三种状态;

2ec14abef9d84ebe94113f1f1992c6cc.png

目前,基于YOLOv5s的跌倒检测精度平均值mAP_0.5:0.95=0.73693。为了能部署在手机Android平台上,本人对YOLOv5s进行了简单的模型轻量化,并开发了一个轻量级的版本yolov5s05_416和yolov5s05_320模型;轻量化模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。下表格给出轻量化模型的计算量和参数量以及其检测精度mAP

模型input-sizeparams(M)GFLOPsmAP_0.5:0.95
yolov5s640×6407.216.50.73693
yolov5s05416×4161.71.80.50567
yolov5s05320×3201.71.10.44821

先展示一下跌倒检测和识别效果(三种状态up,bending和down):

3a3ce27d4ef441019eda36806e00c436.gif8fed04ec3308401d9edf07219afea990.gif

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/130250738


更多项目《跌倒检测和识别》系列文章请参考:

  1. 跌倒检测和识别1:跌倒检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/130184256
  2. 跌倒检测和识别2:YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/130250738
  3. 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250824

  4. 跌倒检测和识别4:C++实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250838

f390c8a31a7a443f9b6cde5959cbf83b.gif


2. 跌倒检测数据集说明

(1)跌倒检测数据集

目前收集了约4000的跌倒检测数据集和26000+跌倒分类数据集,关于跌倒检测数据集说明,请参考:跌倒检测和识别1:跌倒检测数据集(含下载链接)

148040773b104732813caf4e78b9357f.png

(2)自定义数据集

如果需要增/删类别数据进行训练,或者需要自定数据集进行训练,可参考如下步骤:

  1. 采集图片,建议不少于2000张图片
  2. 使用Labelme等标注工具,对目标进行拉框标注:labelme工具:GitHub - wkentaro/labelme: Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
  3. 将标注格式转换为VOC数据格式,参考工具:labelme/labelme2voc.py at main · wkentaro/labelme · GitHub
  4. 生成训练集train.txt和验证集val.txt文件列表
  5. 修改engine/configs/voc_local.yaml的train和val的数据路径
  6. 重新开始训练

da93bc711ce94c209968df81fbcc5ff4.png​​​


3. 基于YOLOv5的跌倒检测模型训练

(1)YOLOv5安装 

训练Pipeline采用YOLOv5: GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite , 原始官方代码训练需要转换为YOLO的格式,不支持VOC的数据格式。为了适配VOC数据,本人新增了LoadVOCImagesAndLabels用于解析VOC数据集,以便正常训练。另外,为了方便测试,还增加demo.py文件,可支持对图片,视频和摄像头的测试。

Python依赖环境,使用pip安装即可,项目代码都在Ubuntu系统和Windows系统验证正常运行,请放心使用;若出现异常,大概率是相关依赖包版本没有完全对应


matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0
tensorboard>=2.4.1
seaborn>=0.11.0
pandas
thop  # FLOPs computation
pybaseutils==0.7.0

 推荐使用Python3.8或Python3.7,更高版本可能存在版本差异问题,项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好开发环境):

(2)准备Train和Test数据

下载跌倒检测数据集, 请参考:跌倒检测和识别1:跌倒检测数据集(含下载链接)

(3)配置数据文件

  • 修改训练和测试数据的路径:engine/configs/voc_local.yaml
  • 注意数据路径分隔符使用【/】,不是【\】
  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
# 数据路径
path: ""  # dataset root dir

# 注意数据路径分隔符使用【/】,不是【\】
# 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!
train:
  - 'D:/home/fall/Fall-Down-Det-v1/train/train.txt'
  - 'D:/home/fall/Fall-Down-Det-v2/train.txt'

val:
  - 'D:/home/fall/Fall-Down-Det-v1/test/test.txt'

test:  # test images (optional)
data_type: voc

# 1.设置类别个数,和要训练的类别名称,ID号从0开始递增
nc: 3  # number of classes
names: { 'up': 0, 'bending': 1, 'down': 2 }

# 2.如果你想合并所有类别为一个大类,进行训练: unique表示合并所有类为单独一个类别
#nc: 1  # number of classes
#names: { "unique": 0 }

(4)配置模型文件

官方YOLOv5给出了YOLOv5l,YOLOv5m,YOLOv5s等模型。考虑到手机端CPU/GPU性能比较弱鸡,直接部署yolov5s运行速度十分慢。所以本人在yolov5s基础上进行模型轻量化处理,即将yolov5s的模型的channels通道数全部都减少一半,并且模型输入由原来的640×640降低到416×416或者320×320,该轻量化的模型我称之为yolov5s05。轻量化后的模型yolov5s05比yolov5s计算量减少了16倍,参数量减少了7倍。下面是yolov5s05和yolov5s的参数量和计算量对比:

模型input-sizeparams(M)GFLOPs
yolov5s640×6407.216.5
yolov5s05416×4161.71.8
yolov5s05320×3201.71.1

(5)重新聚类Anchor(可选)

官方yolov5s的Anchor是基于COCO数据集进行聚类获得(详见models/yolov5s.yaml文件)

 9a26d4fcecb443948888df947ce7f02a.png​​​ 

考虑到跌倒检测数据集,目标框几乎都是竖状的矩形框;原始Anchor是在输入640×640聚类获得的,直接复用原始COCO的Anchor效果可能不太好;因此,这需要我们根据已有的数据集的标注框进行重新聚类获得新的Anchor;这里为了简单,yolov5s直接复用原始Anchor,而yolov5s05_416和yolov5s05_320由于输入分辨率变小,其Anchor也进行等比例缩小下表给出yolov5s,yolov5s05_416和yolov5s05_320重新调整后Anchor结果:

yolov5s.yamlyolov5s05_416.yamlyolov5s05_320.yaml
​​34400b0f17b24fe884d98bce3f306618.png97599bc3015e4d4693c824069f6d9112.png​​6aa45597fff74352bafd3ae9fc952173.png​​

一点建议:

  • 官方yolov5s的Anchor是基于COCO数据集进行聚类获得,不同数据集需要做适当的调整,其最优Anchor建议重新进行聚类 。
  • 当然你要是觉得麻烦就跳过,不需要重新聚类Anchor,这个影响不是特别大。如果你需要重新聚类,请参考engine/kmeans_anchor/demo.py文件

(6)开始训练

整套训练代码非常简单操作,用户只需要填写好对应的数据路径,即可开始训练了。

  • 修改训练超参文件: data/hyps/hyp.scratch-v1.yaml (可以修改训练学习率,数据增强等方式,使用默认即可,可不修改)
  • Linux系统终端运行,训练yolov5s或轻量化版本yolov5s05_416或者yolov5s05_320 (选择其中一个训练即可)
#!/usr/bin/env bash

#--------------训练yolov5s--------------
# 输出项目名称路径
project="runs/yolov5s_640"
# 训练和测试数据的路径
data="engine/configs/voc_local.yaml"
# YOLOv5模型配置文件
cfg="models/yolov5s.yaml"
# 训练超参数文件
hyp="data/hyps/hyp.scratch-v1.yaml"
# 预训练文件
weights="engine/pretrained/yolov5s.pt"
python train.py --data $data --cfg $cfg --hyp $hyp --weights $weights --batch-size 16 --imgsz 640 --workers 4 --project $project


#--------------训练轻量化版本yolov5s05_416--------------
# 输出项目名称路径
project="runs/yolov5s05_416"
# 训练和测试数据的路径
data="engine/configs/voc_local.yaml"
# YOLOv5模型配置文件
cfg="models/yolov5s05_416.yaml"
# 训练超参数文件
hyp="data/hyps/hyp.scratch-v1.yaml"
# 预训练文件
weights="engine/pretrained/yolov5s.pt"
python train.py --data $data --cfg $cfg --hyp $hyp --weights $weights --batch-size 16 --imgsz 416 --workers 4 --project $project


#--------------训练轻量化版本yolov5s05_320--------------
# 输出项目名称路径
project="runs/yolov5s05_320"
# 训练和测试数据的路径
data="engine/configs/voc_local.yaml"
# YOLOv5模型配置文件
cfg="models/yolov5s05_320.yaml"
# 训练超参数文件
hyp="data/hyps/hyp.scratch-v1.yaml"
# 预训练文件
weights="engine/pretrained/yolov5s.pt"
python train.py --data $data --cfg $cfg --hyp $hyp --weights $weights --batch-size 16 --imgsz 320 --workers 4 --project $project


  • Windows系统终端运行,训练yolov5s或轻量化版本yolov5s05_416或者yolov5s05_320 (选择其中一个训练即可) 
#!/usr/bin/env bash

#--------------训练yolov5s--------------
python train.py --data engine/configs/voc_local.yaml --cfg models/yolov5s.yaml --hyp data/hyps/hyp.scratch-v1.yaml --weights engine/pretrained/yolov5s.pt --batch-size 16 --imgsz 640 --workers 4 --project runs/yolov5s_640


#--------------训练轻量化版本yolov5s05_416--------------
python train.py --data engine/configs/voc_local.yaml --cfg models/yolov5s05_416.yaml --hyp data/hyps/hyp.scratch-v1.yaml --weights engine/pretrained/yolov5s.pt --batch-size 16 --imgsz 416 --workers 4 --project runs/yolov5s05_416



#--------------训练轻量化版本yolov5s05_320--------------
python train.py --data engine/configs/voc_local.yaml --cfg models/yolov5s05_320.yaml --hyp data/hyps/hyp.scratch-v1.yaml --weights engine/pretrained/yolov5s.pt --batch-size 16 --imgsz 320 --workers 4 --project runs/yolov5s05_320

  • 开始训练:

​​​f633fcb455d1412a8e07686c27bbf330.png

  • 训练数据量比较大,训练时间比较长,请耐心等待哈
  • 训练完成后,在模型输出目录中有个results.csv文件,记录每个epoch测试的结果,如loss,mAP等信息

训练模型收敛后,yolov5s跌倒检测的mAP指标大约mAP_0.5=0.73693;而,yolov5s05_416 mAP_0.5=0.50567左右;yolov5s05_320 mAP_0.5=0.44821左右;

轻量化后的模型yolov5s05比yolov5s计算量减少了16倍,参数量减少了7倍;相比而言,yolov5s05比yolov5s mAP减低了近30%,对于性能比较弱鸡的手机而言,这个精度是还是可以接受的。

模型input-sizeparams(M)GFLOPsmAP_0.5:0.95
yolov5s640×6407.216.50.73693
yolov5s05416×4161.71.80.50567
yolov5s05320×3201.71.10.44821

(7)可视化训练过程

训练过程可视化工具是使用Tensorboard,使用方法,在终端输入:

# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir=./data/model/yolov5s_640
​​​5784d7eadc6d40f189624d0db4350612.png
​​​c5884d026c9b4dc3b0514b28b897ed6d.png
​​​1b4336bfbe0f4914be7e3604052002bd.png
​​​29b3ef4964f34374bdadd97af12cd191.png

  当然,在输出目录,也保存很多性能指标的图片

  • 这是训练epoch的可视化图,可以看到mAP随着Epoch训练,逐渐提高(见result.png

add6a4b4ca7f4996bf4e8c7c5bde41d3.png

  • 这是每个类别的F1-Score分数(见F1_curve.png

2560b9a30985461981c381359df2a091.png​​​

  • 这是模型的PR曲线(见PR_curve.png

​​​e96712ea885347fda50383fe7f721e58.png

  • 这是混淆矩阵(见confusion_matrix.png):

​​​dee437f047be4543869fbeec849b3bc7.png

(8)常见的错误


4. Python版本跌倒检测效果

demo.py文件用于推理和测试模型的效果,填写好配置文件,模型文件以及测试图片即可运行测试了

  • 测试图片
# 测试图片(Linux系统)
image_dir='data/test_image' # 测试图片的目录
weights="data/model/yolov5s_640/weights/best.pt" # 模型文件
out_dir="runs/test-result" # 保存检测结果
python demo.py --image_dir $image_dir --weights $weights --out_dir $out_dir

Windows系统,请将$image_dir, $weights ,$out_dir等变量代替为对应的变量值即可,如

# 测试图片(Windows系统)
python demo.py --image_dir data/test_image --weights data/model/yolov5s_640/weights/best.pt --out_dir runs/test-result
  • 测试视频文件
# 测试视频文件(Linux系统)
video_file="data/test-video.mp4" # path/to/video.mp4 测试视频文件,如*.mp4,*.avi等
weights="data/model/yolov5s_640/weights/best.pt" # 模型文件
out_dir="runs/test-result" # 保存检测结果
python demo.py --video_file $video_file --weights $weights --out_dir $out_dir
# 测试视频文件(Windows系统)
python demo.py --video_file data/test-video.mp4 --weights data/model/yolov5s_640/weights/best.pt --out_dir runs/test-result

  •  测试摄像头
# 测试摄像头(Linux系统)
video_file=0 # 测试摄像头ID
weights="data/model/yolov5s_640/weights/best.pt" # 模型文件
out_dir="runs/test-result" # 保存检测结果
python demo.py --video_file $video_file --weights $weights --out_dir $out_dir
# 测试摄像头(Windows系统)
python demo.py --video_file 0 --weights data/model/yolov5s_640/weights/best.pt --out_dir runs/test-result

先展示一下跌倒检测效果:

8025d9c74ca84172aa9f460eb1452bbf.gif

 54d6a9a603b84886873371f4e2c0463d.jpeg268b5149a1cb4b4ea94def5aafa8194c.jpeg

 4d2176b19960402d8cdfd7d7e1edb9ea.png494c59e856c54e8483c537985a035fba.png610428a63a43457cbb26db44aa3445fb.png841e06c318024245b292235b41cc909d.png

 如果想进一步提高模型的性能,可以尝试:

  1. ​增加训练的样本数据(重点): 目前跌倒检测数据集总共仅有4000左右的图片,数据量实在有点少,可增加采集并标注数据,提高模型泛化能力
  2. 建议根据自己的业务场景,采集相关数据进行训练,理论上,固定场景,固定摄像头角度,也可以提高模型的检测精度
  3. 本项目将跌倒分为三种状态:up,bending和down,真实业务中可能只需要检测跌倒状态即可(down),可以简化模型只预测down的检测框
  4. 使用参数量更大的模型: 本教程使用的YOLOv5s,其参数量才7.2M,而YOLOv5x的参数量有86.7M,理论上其精度更高,但推理速度也较慢。
  5. 尝试不同数据增强的组合进行训练


5. Android版本跌倒检测和识别效果

已经完成Android版本跌倒检测和识别算法开发,APP在普通Android手机上可以达到实时的检测和识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。详细说明请查看:参考文章:跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测)https://blog.csdn.net/guyuealian/article/details/130250824

Android Demo体验:https://download.csdn.net/download/guyuealian/87707747

6ffc996ba44a4ea18086fe19df0e2cc1.gif     b5554c83e93844d285e551fdfea365f5.gif


6.项目源码下载

整套项目源码内容包含:跌倒检测数据集 + YOLOv5训练代码和测试代码

如需下载项目源码,请WX关注【AI吃大瓜】,回复【跌倒检测】即可下载

项目源码包含内容:

(1)跌倒检测数据集:

  1. 跌倒检测数据集:Fall-Down-Det-v1和Fall-Down-Det-v2,总共约4000张图片
  2. 跌倒分类数据集:Fall-Down-Cls-v1,Fall-Down-Cls-v2和Fall-Down-Cls-v3,总共26000+张图片
  3. 数据集详细说明,请查看:跌倒检测和识别1:跌倒检测数据集(含下载链接)

(2)YOLOv5训练代码和测试代码(Pytorch)

  1. 整套YOLOv5项目工程,含训练代码train.py和测试代码demo.py
  2. 支持高精度版本yolov5s训练和测试
  3. 支持轻量化版本yolov5s05_320和yolov5s05_416训练和测试
  4. 根据本篇博文说明,简单配置即可开始训练:train.py
  5. 源码包含了训练好的yolov5s,yolov5s05_416和yolov5s05_320模型,配置好环境,可直接运行demo.py
  6. 测试代码demo.py支持图片,视频和摄像头测试

 Android跌倒检测APP Demo体验:https://download.csdn.net/download/guyuealian/87707747

### 回答1: 1. 打开终端,输入以下命令安装Fcitx输入法框架: sudo apt-get install fcitx fcitx-config-gtk fcitx-table-all 2. 安装百度输入法: 在终端中输入以下命令: sudo apt-get install fcitx-ui-classic fcitx-frontend-all fcitx-googlepinyin fcitx-sunpinyin 3. 重启电脑,打开系统设置,选择“区域语言”,在“输入源”选项卡中添加Fcitx输入法框架。 4. 在Fcitx输入法框架中,选择“配置”,在“输入法”选项卡中添加百度输入法。 5. 完成以上步骤后,即可在输入法切换栏中选择百度输入法,开始使用。 ### 回答2: Ubuntu20.04 是一款免费的开源操作系统,与许多流行的 Linux 发行版一样,Ubuntu20.04 也支持多种多样的输入法,其中包括百度输入法。本文将为您介绍如何在 Ubuntu20.04 安装百度输入法。 一、添加 PPA 源 1.1 打开终端,执行以下命令,用于添加 PPA 源: sudo add-apt-repository ppa:fcitx-team/nightly 1.2 更新软件包列表: sudo apt-get update 二、安装百度输入法 2.1 在终端中输入以下命令,以安装百度输入法: sudo apt-get install fcitx-bin fcitx-config-gtk fcitx-module-cloudpinyin fcitx-sunpinyin fcitx-table-all im-config -y 2.2 安装结束后,运行以下命令以配置百度输入法: im-config 2.3 当弹出“Input Method Configuration”窗口时,选择“fcitx”并点击“OK”。它将提示您是否要使用 usr/share/defualt/imconfig.d/00-settings作为启动文件,点击“Yes”,再次点击“OK”。 2.4 在重新启动后,单击屏幕左上角的应用程序菜单,并搜索“Fcitx Config Tool”,然后运行它。 单击“添加”按钮,选择百度输入法,在“名称”框中输入“Baidu Pinyin”,然后单击“OK”。 2.5 现在百度输入法已成功安装并启动。在输入您的文字时,使用Ctrl + Shift 快捷键或单击系统托盘中的键盘图标来切换不同的输入法。 总之,安装百度输入法非常简单,只需一些基本命令几个简单的步骤即可完成。享受您的 Ubuntu20.04 百度输入法吧! ### 回答3: Ubuntu 20.04 是一款流行的 Linux 操作系统,它的用户界面简单易用。虽然 Ubuntu 20.04 默认提供了多种语言键盘布局,但是如果你需要输入中文,百度输入法可能是一个不错的选择。本文将介绍如何在 Ubuntu 20.04 上安装百度输入法。 安装依赖项 在 Ubuntu 20.04 上安装百度输入法之前,请确保已安装以下依赖项: ``` sudo apt install fcitx fcitx-config-gtk fcitx-table-all ``` 安装方法 1. 打开终端,输入以下命令添加百度输入法 PPA: ``` sudo add-apt-repository ppa:fcitx-team/nightly sudo apt-get update ``` 2. 然后输入命令安装百度输入法: ``` sudo apt-get install fcitx-frontend-qt5 fcitx-module-cloudpinyin fcitx-sunpinyin im-config ``` 3. 安装完成后,重启计算机。然后打开终端,使用以下命令配置输入法: ``` im-config ``` 4. 选择 fcitx 并确认。如果无法选择,则直接回车,选择 fcitx 然后确认。 ![image-20210904223613257](https://cdn.jsdelivr.net/gh/yydyg/materials/img/20210904223613.png) 5. 然后,打开终端,使用以下命令安装百度输入法: ``` sudo apt install fcitx-ui-classic ``` 6. 在系统设置中,选择「区域语言」,然后单击「管理安装的输入法」按钮。 ![image-20210904224045085](https://cdn.jsdelivr.net/gh/yydyg/materials/img/20210904224045.png) 7. 点击「+」按钮添加百度输入法,并选择合适的输入法选项。按下「添加」按钮,然后点击「关闭」。 ![image-20210904224327476](https://cdn.jsdelivr.net/gh/yydyg/materials/img/20210904224328.png) 8. 现在,你可以使用百度输入法输入中文了。可以在文本区域右下角切换输入法。 ![image-20210904224515711](https://cdn.jsdelivr.net/gh/yydyg/materials/img/20210904224516.png) 总结 百度输入法已在 Ubuntu 20.04 上安装成功。你可以使用它在 Linux 平台上输入中文。当然,百度输入法并不是唯一的选择。无论你选择哪种输入法,确保按照以上步骤正确安装启用它。希望本文有助于你使用 Ubuntu 20.04。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI吃大瓜

尊重原创,感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值