激活函数------sigmoid、tanh和ReLU

激活函数------sigmoid、tanh和ReLU

激活函数的作用

激活函数的主要作用是在神经网络中引入非线性因素。

常见的三种激活函数

这三种激活函数的公式分别为:
sigmoid: f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1
tanh: f ( x ) = e x − e − x e x + e − x f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} f(x)=ex+exexex
ReLU: f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

sigmoidtanhReLU
梯度消失容易造成也容易造成,但优于sigmoid可以减缓,优于前两者
常见应用二分类任务RNN网络CNN网络
优点函数平滑,容易求导①函数平滑,容易求导
②输出关于零点对称
①求导更快,收敛更快
②有效缓解了梯度消失问题
③增加网络的稀疏性
缺点①容易造成梯度消失
②存在幂运算,计算量大
③其输出不关于零点对称
①容易造成梯度消失
②同样存在计算量大的问题
容易造成神经元的“死亡”
图形
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gz7seven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值