pytorch动态调整学习率之Poly策略

在进行深度学习训练过程中学习率是优化时非常重要的一个因子,通常情况下,在训练过程中学习率都是要动态调整的,通常学习率会逐渐衰减。本文讲解其中一个策略------Poly策略。
Poly是一种指数变换的策略,具体公式如下所示:
l r = b a s e _ l r × ( 1 − e p o c h n u m _ e p o c h ) p o w e r lr = base\_lr \times {\left( {1 - \frac{{epoch}}{{num\_epoch}}} \right)^{power}} lr=base_lr×(1num_epochepoch)power
其中, l r lr lr为新的学习率, b a s e _ l r base\_lr base_lr为基准学习率, e p o c h epoch epoch为迭代次数, n u m _ e p o c h num\_epoch num_epoch为最大迭代次数, p o w e r power power控制曲线的形状(通常其大于1)。
具体代码如下:

def adjust_learning_rate_poly(optimizer, epoch, num_epochs, base_lr, power)
    lr = base_lr * (1-epoch/num_epochs)**power
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
    return lr

以下为学习率随power变化而变化的曲线,假设 b a s e _ l r base\_lr base_lr=0.005, n u m _ e p o c h num\_epoch num_epoch=100。
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gz7seven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值