图像分割UNet系列------UNet++详解

本文详细解读了UNet++这一UNet的重要改进版本,它解决了网络深度适应性和特征融合问题。UNet++通过短连接和上下采样实现多层特征融合,提升了对医学图像分割的效果,尤其是在不同尺度病灶的识别上表现出色。然而,该模型参数较多,且可能存在边缘信息丢失的问题,尤其在低对比度图像中效果受影响。作者认为UNet++的贡献在于网络通用性与特征融合策略,但同时也指出其参数优化和细节处理的挑战。
摘要由CSDN通过智能技术生成

图像分割unet系列------UNet++详解


    UNet++发表于2018年中期,它也是UNet非常重要的改进版本之一,我认为也是最直接的改进版本。当然,UNet++在论文中主要是用息肉(polyp)、肝脏(liver)和细胞核(cell nuclei)等医学图像分割进行实验。

1、UNet++解读

    UNet++解读有很多文章,自己本来想好好捋一下发在这里,后来发现有两本篇文章相当的好,所以自己偷点懒不在写了,把文章连接发在这,大家真的可以好好看看:

  1. UNet++解读 + 它是如何对UNet改进 + 作者的研究态度和方式
  2. [论文笔记] UNet++

2、自己的看法

2.1 网络深度问题

    UNet++解决了不同数据量、不同场景应用对网络深度的要求。我认为这个是UNet++非常重要的贡献,这直接省去很多时间来进行UNet网络深度的修改,一个解决多种可能性。

2.2 特征融合

    UNet++通过短连接和上下采样等操作,间接融合了多个不同层次的特征,而非简单的Encoder与Decoder同层级特征的简单拼接。正因为此,Decoder可以感知不同感受野下大小不一的object,这对医学图像不同部位不同病灶(形态、大小、位置均不同)的分割效果良好。

2.3 缺点是什么

    UNet++并不完美,事实上没有完美的算法。他的缺点是什么呢,我认为有以下几点:

  1. UNet++参数较多,虽然论文中提到可以使用剪枝的方法进行参数的缩减,但是本质上它的参数依然较多。
  2. UNet++虽然间接融合了不同感受野的特征,但是只是融合了下一层的信息,上一层的信息并没有融合,这就造成其Decoder部分的细粒度依然不够精细,使分割结果存在丢失边缘信息和位置信息的情况。在实际使用中,低对比度图像的效果将受到影响(本人做过相关实验,调了很长时间分割效果依然不佳)。

    以上是我自己的意见,当然欢迎大家讨论。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gz7seven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值