导数
导数是什么
首先举一个例子,对于一个时间-路程函数图像
为什么某一点的瞬时速率等于该点的切线斜率呢?
我们采用上节课极限的思想,当时间增加Δx,路程增加为Δy,当Δx趋于0时,此时的速度为Δy/Δx,即为该点的斜率。
我们把f(x)上每一点切线斜率所构成的新函数,记为:f`(x)。这就是导数!
由此可见,导数可以反应出因变量对着自变量增长而变化的快慢。
导数的定义如下:
导数的基本运算
导数的链式法则
对于复合函数求导,可以使用链式法则: d y / d x = d y / d u ∗ d u / d x dy/dx=dy/du*du/dx dy/dx=dy/du∗du/dx
例如:对于
y
=
s
i
n
(
x
2
)
y=sin(x^2)
y=sin(x2)
关于导数的常见问题
判断函数是否可导
判断函数在 x = x 0 x=x0 x=x0是否可导,即为判断极限 lim Δ x → 0 ( f ( x 0 + Δ x ) − f ( x 0 ) ) / Δ x \lim\limits_{Δx\rightarrow 0}(f(x0+Δx)-f(x0))/Δx Δx→0lim(f(x0+Δx)−f(x0))/Δx
隐函数求导
所谓隐函数,就是无法写出
y
=
f
(
x
)
y = f(x)
y=f(x)的形式,例如:
y
−
e
x
=
1
y - e^x = 1
y−ex=1
对于隐函数求导,需要结合求导的链式法则,同时对左右两边进行求导,最后进行化简
参数方程求导
参数方程求导,有时可以应用于极坐标方程给出的曲线快捷地求切线:
因为直角坐标和极坐标的转换如下:
很有可能能够构造出y和x对角度θ或者ρ的参数方程
莱布尼茨公式
莱布尼茨运用于求函数相乘的n阶导数,公式和二项式定理非常相似:
泰勒公式
让我们先思考一个问题:我们知道计算机在进行运算时,只能进行加减乘除这几项运算,那么当我们想要通过计算机来计算一个三角函数例如 s i n x sinx sinx 时,此时应该怎么办?
首先对于一个多项式函数: y = a 0 + a 1 x + a 2 x 2 + . . . + a n x n y = a0 + a1x + a2x^2+...+anx^n y=a0+a1x+a2x2+...+anxn,当多项式的次数越高,对应的函数曲线就越多变,那么我们可以通过使用多项式函数对一个任意形状的曲线进行逼近。最后得到一个近似于它的曲线,但是其方程又是通过多项式表示。这样计算机就可以通过加减乘除进行近似计算
由此问题提出泰勒公式:
如何将任意一个曲线方程 f ( x ) f(x) f(x)转换成多项式函数 y = a 0 + a 1 x + a 2 x 2 + . . . + a n x n y = a0 + a1x + a2x^2+...+anx^n y=a0+a1x+a2x2+...+anxn呢?
问题的关键在于从a0 到 an这些系数如何获得,最简单的a0,就是当x = 0时,f(x)的值。
a1的值呢?我们对方程进行求导,就得到了 y ˙ = a 1 + 2 ∗ a 2 ∗ x + 3 ∗ a 3 ∗ x 2 + . . . + ( n − 1 ) ∗ a n ∗ x n − 1 \dot{y} = a1 + 2*a2*x + 3*a3*x^2 +...+(n-1)*an*x^{n-1} y˙=a1+2∗a2∗x+3∗a3∗x2+...+(n−1)∗an∗xn−1,所以 a 1 = y ˙ a1 = \dot{y} a1=y˙
以此类推,我们可以得到通用方程,函数f(x)在x0处的泰勒展开为:
以下为常用泰勒展开:
导数应用
导数 y ˙ = d y / d x \dot{y}=dy/dx y˙=dy/dx,即 d y = y ˙ d x dy=\dot{y}dx dy=y˙dx,当dx变化非常小时,可以近似的认为 Δ y = y ˙ Δ x Δy=\dot{y}Δx Δy=y˙Δx
例如: