【Matlab】基于BP神经网络的数据回归预测新数据(Excel可直接替换数据)
1.模型原理
基于BP神经网络的数据回归预测是一种常见的机器学习方法,用于处理回归问题。回归问题的目标是根据输入数据预测连续的数值输出。在这种预测中,BP神经网络通过前向传播和反向传播算法自动学习输入数据与输出之间的映射关系,并能够在新的输入数据上进行预测。下面详细介绍其原理:
-
BP神经网络基本结构:
BP神经网络是一种前馈式神经网络,由输入层、隐藏层(可以有多个)、输出层组成。输入层接收原始数据,输出层产生预测结果,而隐藏层则负责提取和表示数据的特征。 -
前向传播:
在进行预测时,BP神经网络通过前向传播算法来计算输出值。首先,将输入数据传递给输入层,然后通过隐藏层逐层传递信息,最终得到输出层的预测结果。 -
权重和偏置:
在神经网络中,每个连接都有一个权重,每个神经元都有一个偏置项。这些权重和偏置是网络的参数,它们在训练过程中被学习和调整,以最优化模型的性能。 -
激活函数:
在隐藏层和输出层的神经元上,通常会使用激活函数来引入非线性,增加网络的表达能力