【Sklearn】基于最中心分类器算法的数据分类预测(Excel可直接替换数据)

本文介绍了最近中心分类器的工作原理,它通过计算样本与类别中心的距离进行分类。在Scikit-Learn中,该模型适用于简单的分类任务,并提供了调整距离度量的参数。文章还包含了模型的实现代码、数据下载链接和运行结果。
摘要由CSDN通过智能技术生成

【Sklearn】基于最中心分类器算法的数据分类预测(Excel可直接替换数据)

1.模型原理

最近中心分类器(Nearest Centroid Classifier)也被称为近似最近邻分类器(Nearest Shrunken Centroid Classifier)。它是一种基于类别中心的分类方法,适用于线性可分问题。其基本思想是将每个类别的样本特征取平均,得到每个类别的中心点,然后将待分类样本与这些中心点进行距离比较,将其分配给距离最近的类别。

以下是最近中心分类器的模型原理及数学公式:

模型原理:

  1. 对于每个类别,计算其样本特征的平均值,得到类别的中心点。
  2. 对于一个待分类的样本,计算其与每个类别中心点的距离,然后将其分配给距离最近的类别。

数学模型:

  1. 对于类别 c c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲代码两年半的练习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值