【梳理】离散数学 第10章 群与环 10.1 群的定义与性质

本文详细介绍了群的定义,包括半群、幺半群和群的概念,以及群的性质,如结合律、单位元、逆元等。通过多个例子,如整数加群、矩阵群等,阐述了群的运算特性,并探讨了群的阶、幂运算、消去律等相关概念。此外,还证明了特定情况下群中元素阶的性质及其相互关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

教材:《离散数学》第2版 屈婉玲 耿素云 张立昂 高等教育出版社
源文档高清截图在最后

第10章 群与环

10.1 群的定义与性质

1、对代数系统A = <S,> :
(1)如果
为二元运算(注意:从集合S到集合S本身的二元运算是封闭的)且可结合,则称A为半群。
(2)在(1)的条件下,如果e∈S是关于*运算的单位元,则A是幺半群,或称独异点。
(3)在(2)的条件下,如果任意a∈S都有a-1∈S,就称A是群,群一般记作G。
例:
(1)<Z+,+>、<N,+>,<Z,+>,<Q,+>,<R,+>,<C,+>都是半群,+是普通加法。它们中除了<Z+,+>以外都是独异点,因为都含有单位元0。而<Z,+>,<Q,+>,<R,+>,<C,+>都是群,分别称作整数加群、有理数加群、实数加群、复数加群,因为它们的每个元素都有逆元,逆元为其相反数。
(2)设n ≥ 1,<Mn®,+>和<Mn®,·>都是半群,也都是独异点,因为矩阵加法和矩阵乘法都是可结合的,且关于它们的单位元分别是:零矩阵、单位矩阵。<Mn®,+>是群,因为每个矩阵M都有其逆元-M。<Mn®,·>不是群,因为有的矩阵没有关于乘法的逆矩阵(这里的逆矩阵不是广义的)。
(3)<P(S),⊕>是群,⊕为集合的对称差运算,单位元为∅,幂集的每个集合元素的逆元为本身(S⊕S = ∅)。
(4)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值