107 - Lecture4

Relations

一. Definition and examples

  1. 关系的定义:

定义了两个集合:S代表利物浦大学的本科生集合,C代表提供的本科生课程集合。然后,通过有序对(s, c)来构建一个新的集合R,这些有序对表示学生s注册了课程c的property。

R = {(s, c) ∈ S × C | s registered for c }

集合R实质上是集合S和C的笛卡尔积的一个子集,它捕获(capture)了“注册”这一关系。

二元关系的定义:两个集合A和B之间的二元关系(binary relation)R,是这两个集合笛卡尔积(Cartesian product)A × B的一个子集(subset)。如果集合A和B相同A = B,那么这个关系R就被称为集合A上的二元关系。(a binary relation on A)

Example请添加图片描述

从集合 A X B 中,选择满足 x + y = 9 的有序对。

x = 1 时: 1 + y = 9 ,解得 y = 8 ,但 y \notin B ,所以没有有序对。
• x = 3 时: 3 + y = 9 ,解得 y = 6 ,因此有序对 (3, 6) 。
• x = 5 时: 5 + y = 9 ,解得 y = 4 ,因此有序对 (5, 4) 。
• x = 7 时: 7 + y = 9 ,解得 y = 2 ,因此有序对 (7, 2) 。

所以, U = {(3, 6), (5, 4), (7, 2)} 。

Example 2

请添加图片描述

逐步找出 R 中的有序对:

•	 y = 1  时, x  可以是 1,因为 1 是所有数的因子。
•	有序对: (1, 1) 
•	 y = 2  时, x  可以是 1 和 2,因为 1 和 2 都是 2 的因子。
•	有序对: (1, 2), (2, 2) 
•	 y = 3  时, x  可以是 1 和 3,因为 1 和 3 都是 3 的因子。
•	有序对: (1, 3), (3, 3) 
•	 y = 4  时, x  可以是 1、2 和 4,因为 1、2 和 4 都是 4 的因子。
•	有序对: (1, 4), (2, 4), (4, 4) 
•	 y = 5  时, x  可以是 1 和 5,因为 1 和 5 都是 5 的因子。
•	有序对: (1, 5), (5, 5) 
•	 y = 6  时, x  可以是 1、2、3 和 6,因为 1、2、3 和 6 都是 6 的因子。
•	有序对: (1, 6), (2, 6), (3, 6), (6, 6) 

总结:

关系 R 中的有序对为:

R = {(1, 1), (1, 2), (2, 2), (1, 3), (3, 3), (1, 4), (2, 4), (4, 4), (1, 5), (5, 5), (1, 6), (2, 6), (3, 6), (6, 6)}

二. 二元关系的表示方法:

Representation of binary relation by directed graphs

设A和B是两个有限(infinite)集,R是这两个集合之间的二元关系(即,R ⊆ A × B)。
我们将这两个集合的元素表示为图的顶点(vertices)。
对于每一个 (a, b) ∈ R,我们画一个箭头(arrow)连接相关(linking the related)的元素。
这被称为R的有向图(directed graph)(或有向图digraph)。

Example

请添加图片描述

Digraphs of binary relation on a single set

请添加图片描述

Representation of binary relation by matrices

矩阵:关系也可以通过矩阵表示。如果A和B是有限集合,那么AXB的关系可以用一个nxm的矩阵来表示,矩阵的每个元素表示某对有序对是否属于关系。
表示有限集合之间二元关系的一种方式是使用数组(array),也就是矩阵。

给定两个有限集合A和B,以及A与B之间的一个二元关系R

我们可以用一个n行m列的矩阵M来表示这个关系R。

矩阵M中的每个元素M(i, j)对应于集合A中的元素ai和集合B中的元素bj的组合。

如果这两个元素之间存在关系R,则矩阵中相应位置的元素为真(T),表示为1;如果不存在关系,则为假(F),表示为0。

请添加图片描述

Example 1

请添加图片描述

关系矩阵M的行对应集合 A 的元素( a1, a2, a3, a4 ),列对应集合 B 的元素( b1, b2, b3 )

Example 2

请添加图片描述

属于二元关系 R 的有序对为:

R = {(a, b), (a, c), (b, c), (b, d), (c, b), (d, a), (d, d)}

Unary Relation

一元关系
二元关系被称为“二元”的原因是因为它是两个集合之间的关系。
其中一个课堂问题研究了“三元”(ternary)关系(三个集合之间的关系)。
一元关系(Unary relation)仅仅是集合的一个子集它描述了集合内部元素的某种特性
例子:在正整数集合Z+上的“偶数正整数”一元关系是
{x ∈ Z+ | x是偶数}

Infix notation for binary relation

二元关系的中缀符号
如果R是一个二元关系,那么当(x, y)属于R时,我们写作xRy
谓词xRy读作x与y有R关系x is R-related to y)。

三. Properties of binary relation(二元关系的性质):

A binary relation R on a set A is

•自反性(Reflexive):when xRx for all x ∈ A
定义:一个关系是自反的,如果集合中的每个元素都与自己有关系。
例子:如果 A = {1, 2, 3} ,那么 R = {(1, 1), (2, 2), (3, 3)} 是自反的,因为每个元素都与自己有关系

•对称性(Symmetric):when xRy implies yRx for all x, y ∈ A

定义:一个关系是对称的,如果 x 与 y 有关系,那么 y 也与 x 有关系。
例子: R = {(1, 2), (2, 1)} 是对称的,因为 1 与 2 有关系,同时 2 也与 1 有关系。

•反对称性(Antisymmetric):when xRy and yRx imply x = y for all x, y ∈ A
定义:一个关系是反对称的,如果 x 与 y 有关系,且 y 与 x 也有关系,那么 x 和 y 必须是同一个元素。
例子: R = {(1, 1), (2, 2)} 是反对称的,因为没有不同的元素互相有关系。

•传递性(Transitive):when xRy and yRz imply xRz for all x, y, z ∈ A

定义:一个关系是传递的,如果 x 与 y 有关系, y 与 z 有关系,那么 x 也与 z 有关系。
例子: R = {(1, 2), (2, 3), (1, 3)} 是传递的,因为 1 与 2 有关系, 2 与 3 有关系,因此 1 与 3 也有关系。

总结一下:

•	自反性:自己跟自己有关系(自己和自己握手)。
•	对称性:如果你和别人有关系,别人也必须和你有关系(朋友关系)。
•	反对称性:如果两个人互相有关系,那他们得是同一个人(上下级关系,不能互相管除非是自己)。
•	传递性:如果你和一个人有关系,这个人和另一个人有关系,那么你也和那个另一个人有关系(传递性就像间接认识)。## 四. Transitive closure(传递闭包):

在有向图表示中(In the directed graph representation)
如果每个顶点(vertex)到自身的箭头总是存在,则R是自反的;
如果从x到y有箭头时,也存在从y到x的箭头,则R是对称的;
如果从x到y有箭头,并且x不等于y时,不存在从y到x的箭头,则R是反对称的;
如果从x到y有箭头,且从y到z也有箭头,则也存在从x到z的箭头,则R是传递的。

Example

1.x divides y on the set Z+ of positive integers(x 整除 y 在正整数集合上):

•	自反性:自反的。任何一个数  x  都能整除自己,因此对于每个  x ,都有  xRx 。
•	对称性:不是对称的。如果  x  整除  y ,这不意味着  y  也能整除  x 。例如,2 能整除 4,但 4 不能整除 2。
•	反对称性:是反对称的。如果  x  整除  y  且  y  整除  x ,则  x  必须等于  y 。
•	传递性:是传递的。如果  x  整除  y ,且  y  整除  z ,那么  x  一定能整除  z 。

总结:这个关系是自反的、反对称的、传递的,但不是对称的。

2.x , y on the set Z of integers(x 不等于 y 在整数集合上):

•	自反性:不是自反的。因为一个数不能与自己不相等,即  x \neq x  不成立。
•	对称性:是对称的。如果  x \neq y ,那么  y \neq x  也成立。
•	反对称性:不是反对称的。如果  x \neq y ,这并不能说明  x  和  y  是相等的,它们正好相反。
•	传递性:是传递的。如果  x \neq y  且  y \neq z ,那么  x \neq z  也成立。

总结:这个关系是对称的和传递的,但不是自反的,也不是反对称的。

  1. x has the same age as y on the set of people (x 和 y 的年龄相同):

    • 自反性:自反的。每个人的年龄和自己相同,即 xRx 总是成立。
    • 对称性:是对称的。如果 x 和 y 年龄相同,那么 y 的年龄也和 x 相同。
    • 反对称性:是反对称的。因为如果 x 和 y 的年龄相同,那么 x = y 。
    • 传递性:是传递的。如果 x 和 y 年龄相同, y 和 z 年龄相同,那么 x 和 z 的年龄也相同。

总结:这个关系是自反的、对称的、反对称的、传递的。

传递闭包(Transitive Closure)

传递闭包是指通过现有的关系推导出所有满足传递性的关系。换句话说,如果关系 R 中 xRy 且 yRz ,那么必须加入 xRz 到关系中

对于集合A上的一个二元关系R,R的传递闭包(transitive closure)R*是另一个在A上的(uniquely determined)关系,它具有以下特性:

  1. R是传递(transitive)的,这意味着如果在R中存在元素对(a, b)和(b, c),那么也一定存在元素对(a, c)。
  2. R是R的子集,即R中的所有元素对也都在R中。
    R ⊆ R∗
  3. 如果S是集合A上的任意一个传递关系,并且R是S的子集,那么R*也将是S的子集。If S is a transitive relation on A and R ⊆ S, then R∗ ⊆ S

简单来说,R*是包含R的最小的传递关系。

Example 1请添加图片描述

从 (1, 2) 和 (2, 3) 可以得到 (1, 3) ,但 (1, 3) 已经在关系中,所以不用再加。
• 从 (3, 1) 和 (1, 2) 可以推导出 (3, 2) ,因此需要加入 (3, 2) 。
• 从 (1, 3) 和 (3, 1) 可以推导出 (1, 1) ,但 (1, 1) 已经在关系中,所以不用再加。
• 从 (2, 3) 和 (3, 1) 可以推导出 (2, 1) ,因此需要加入 (2, 1) 。

  1. 传递闭包的结果:

通过传递性,除了给定的关系 R 以外,我们需要加入以下两个新关系:

•	 (3, 2) 
•	 (2, 1) 

因此,传递闭包为:

R^+ = {(1, 1), (1, 2), (1, 3), (2, 3), (3, 1), (3, 2), (2, 1)}

Example 2

请添加图片描述

若从一个节点通过一条或多条路径可以到达另一个节点,那么我们就在关系中添加一条直接的边

自反边(loops):图中节点 3 和 5 上有自反边(环),表示它们与自己有关系,即 (3, 3) 和 (5, 5) 属于这个关系。
• 检查路径的传递性:
• 节点 1 到节点 2 有一条直接的边 (1, 2) 。
• 节点 2 到节点 6 有一条直接的边 (2, 6) ,通过传递性,节点 1 到节点 6 也有关系,因此加入 (1, 6) 。
• 节点 1 到节点 4 有一条直接的边 (1, 4) 。
• 节点 4 到节点 6 有一条直接的边 (4, 6) ,通过传递性,节点 1 到节点 6 也有关系,但已经考虑过。
• 节点 4 和 5 之间有一条边 (4, 5) ,并且节点 5 与自己有关系,因此通过传递性,可以得到 (4, 5) 和 (4, 4) 。
• 节点 6 到节点 5 有一条边 (6, 5) ,结合节点 4 和 6 的关系,可以推出 (4, 5) 。

总结传递闭包:

通过图中边的传递性,我们可以推导出以下关系(传递闭包):

R^+ = {(1, 1), (1, 2), (1, 4), (1, 6), (2, 2), (2, 6), (3, 3), (4, 4), (4, 5), (4, 6), (5, 5), (6, 5)}

五. Equivalence relations and partitons(等价关系和划分):

等价关系(Equivalence Relation)是具有自反性、对称性和传递性的关系。

Ex = {y | yRx}

等价类 E_x 表示与 x 有相同“关系”的元素的集合,或者说,所有与 x 等价的元素都属于 E_x 。

例子

假设集合 A = {1, 2, 3, 4} ,关系 R 表示“模 2 余数相同的关系”,那么:

•	 E_1 = {1, 3}  因为 1 和 3 模 2 余数相同。
•	 E_2 = {2, 4}  因为 2 和 4 模 2 余数相同。

在这个例子中,所有模 2 余数相同的元素都属于同一个等价类

请添加图片描述

要证明 R 是等价关系,我们需要验证它是否满足自反性、对称性和传递性。

  1. 自反性:

    • 对于任意 x \in \mathbb{R} ,有 x - x = 0 ,而 0 是整数。所以 xRx 成立,这表明 R 是自反的。

  2. 对称性:

    • 假设 xRy ,即 x - y 是整数。那么 y - x = -(x - y) 也是整数。因此, yRx 成立,表明 R 是对称的。

  3. 传递性:

    • 假设 xRy 且 yRz ,即 x - y 和 y - z 都是整数。那么 x - z = (x - y) + (y - z) 也是整数。因此 xRz 成立,表明 R 是传递的。

结论:因为 R 满足自反性、对称性和传递性,所以 R 是一个等价关系。

等价类的解释:

  1. E_0 (0 的等价类):

等价类 E_0 表示与 0 等价的所有实数。根据关系 R 的定义, y \in E_0 当且仅当 y - 0 是整数。因此, E_0 包含所有整数:

  1. E_{\frac{1}{2}} ( \frac{1}{2} 的等价类):

等价类 E_1/2 表示与 1/2 等价的所有实数。根据关系 R 的定义, y 属于 E_1/2 当且仅当 y - 1/2 是整数。这意味着所有与 1/2 相差一个整数的数都属于这个等价类。换句话说,所有形如 n + 1/2 的数(其中 n 是整数)都属于等价类 E_1/2 。

Partition of a set 集合的划分

集合A的一个划分是A的非空(non-empty)子集的集合
A1, …, An,满足以下条件:
A = A1 ∪ A2 ∪ … ∪ An;
对于所有的i和j,i ≠ j,则Ai ∩ Aj = ∅。
这些Ai被称为划分的块(blocks of the partition)。
通过等价关系,一个集合可以被划分为若干个不相交的子集,这些子集称为划分的块(blocks of Partition)。

Connecting partitions and equivalence relation

Theorem: Let R be an equivalence relation on a non-empty set A.
Then the equivalence classes {Ex | x ∈ A} form a partition of A.
如果我们有一个等价关系 R 作用在集合 A 上,那么我们可以将 A 划分成若干个不相交的等价类,每个等价类是集合 A 的一个子集。这些等价类共同覆盖了集合 A ,并且每个元素只属于其中的一个等价类
Theorem
Suppose that A1, . . . , An is a partition of A. Define a relation R on A by setting: xRy if and only if there exists i such that 1 ≤ i ≤ n and x, y ∈ Ai. Then R is an equivalence relation.
上面的定理说明了基于划分定义的关系是一个等价关系。

具体来说:

•	如果你将集合  A  划分成若干个互不相交的子集 A_1, A_2,……, A_n ,那么你可以基于这个划分定义一个关系  R ,该关系把属于同一个子集的元素看作“等价”。
•	这个定义的关系  R  具有等价关系的三个基本性质:
1.	自反性:每个元素与自己在同一个子集中,因此每个元素与自己等价。
2.	对称性:如果两个元素属于同一个子集,那么它们互相等价。
3.	传递性:如果两个元素与一个第三个元素等价,那么这两个元素彼此等价。

总结:这个定理表明,集合的划分和等价关系是等价的概念。每个划分都可以定义一个等价关系,反之,每个等价关系都可以将集合划分成若干个等价类。

六. Partial orders (偏序)

•	偏序(Partial Order)是自反、传递和反对称的关系。

偏序在我们希望描述优先级(characterise precedence)的情况下非常重要。

幂集上的包含关系 \subseteq :the relation ⊆ on Pow(A)
• 对于集合 A 的幂集 Pow(A) (即所有子集的集合),我们定义包含关系 \subseteq 。
• 这个关系是自反的:每个子集都包含自己。
• 这个关系是反对称的:如果 X \subseteq Y 且 Y \subseteq X ,那么 X = Y 。
• 这个关系是传递的:如果 X \subseteq Y 且 Y \subseteq Z ,那么 X \subseteq Z 。

正整数集合上的“整除”关系:“is a divisor of” on the set Z of positive integers	

• 定义关系“ x 整除 y ”在正整数集合 \mathbb{Z}^+ 上。
• 这个关系是自反的:每个正整数都能整除自己。
• 这个关系是反对称的:如果 x 整除 y ,且 y 整除 x ,那么 x = y 。
• 这个关系是传递的:如果 x 整除 y ,且 y 整除 z ,那么 x 整除 z 。

Predecessors in partial orders

如果R是集合A上的一个偏序关系,那么当x和y是集合A中的两个元素,并且x与y之间满足xRy时,我们称x是y的前驱(x a predecessor of y)。

If x is a predecessor of y and there is no z 不属于 {x, y} for which xRz and zRy
如果x是y的前驱,并且不存在另一个元素z,使得z既小于x也小于y(这里的“小于”指的是在偏序关系R中,z与x和y都有关系,但z既不大于x也不大于y),那么我们称x是y的直接前驱(immediate predecessor of y)。
• “并且没有 z 属于 {x, y}”:意思是除 x 和 y 以外,集合 A 中不存在其他元素 z ,使得 xRz 且 zRy 成立。也就是说,x ≤ z ≤ y,但是z ≠ x 且 z ≠ y

解释:
• 前驱(Predecessor):指的是 x ≤ y ,也就是 x 排在 y 之前。换句话说, x 与 y 之间存在某种顺序关系。
• 直接前驱(Immediate Predecessor):不仅要求 x ≤ y ,还要求在 x 和 y 之间没有其他元素 z 存在,也就是没有一个 z 介于 x 和 y 之间。

哈斯图(Hasse Diagram):

偏序的哈塞图是一个有向图。有向图的顶点是偏序的元素,有向图的边由“直接前驱”关系给出。通常将箭头指向上方绘制。

Total orders

A binary relation R on a set A is a total order if it is a partial order such that for any x, y ∈ A, xRy or yRx.

一个在集合A上的二元关系R被称为全序关系,如果它满足以下条件:
首先,R必须是偏序关系,这意味着R必须满足自反性、反对称性和传递性;
其次,对于集合A中的任意两个元素x和y,x和y之间必须存在顺序关系,即要么x小于或等于y(xRy),要么y小于或等于x(yRx)。
全序关系的Hasse图是一个链状结构(chain),即所有元素都是线性排列的。
全序关系的例子包括:
实数集上的小于等于关系(≤),
字典中的通常词典序排列(the usual lexicographical ordering)
而“是……的因数(is a divisor of)”这一关系则不是全序关系,因为存在一些元素对,它们之间没有明确的顺序关系。

文档主要探讨了二元关系的定义、表示、性质和应用,尤其是在集合上的关系如何通过图和矩阵等方式表示,并通过等价关系和偏序来理解集合的划分和排序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值