cs224 -Lecture 1:Introduction and Word Vectors

1、课程介绍

  • 了解有效的现代深度学习方法;
    - 首先回顾一些基础知识,然后介绍NLP中的关键方法:递归网络,注意力机制等;
  • 了解人类语言的全貌,以及理解和产生语言的困难;
  • 理解并有能力为NLP中的主要问题构建系统(在pytorch中);
    - 单词的意思,依赖解释(dependency parsing),机器翻译,问题回答;

2、人类语言和词义

2.1 我们怎样表达一个词的意思?

定义:meaning(韦氏词典)——对meaning的定义的解释

  • 用一个词、短语等来表示想法;
  • 一个人想要用语言、符号等来表达的想法;
  • 以文字、艺术等形式表达的思想。最常见的语言意义思考方式: 能 指 ( 符 号 ) ⇔ 所 指 ( 概 念 或 者 事 物 ) = 指 称 语 义 能指(符号)\Leftrightarrow 所指(概念或者事物)=指称语义 =

2.2 我们如何在计算机中拥有可用的意义

常见的解决方案:使用例如WordNet,一个包含同义词集和上位词(“is a” 关系)列表的同义词典;

2.3 资源的问题(例如Wordnet)

  • 作为资源很好,但缺少细微差别;
    • 如“精通”被列为“好”的同义词,这只在某些情况下是正确的;
  • 缺少单词的新含义;
    • 如邪恶,坏蛋,俏皮的向导,天才,忍者炸弹;
    • 无法保持更新;
  • 主观的;
  • 需要人类劳动来创造和适应;
  • 无法计算准确的单词相似度;

2.4 用离散符号表示单词

在传统的NLP中,我们把单词看作离散的符号:旅馆、会议、汽车旅馆——一种地方主义的表现(localist representation);

单词可以通过独热向量来表示:
motel = [0 0 0 0 0 0 0 0 0 0 0 1 0 0 ]
hotel = [0 0 0 0 0 0 1 0 0 0 0 0 0 0 ]

这存在一个问题,语言是有很多单词的,例如英语,实际上英语的单词是无限的,我们可以在现有单词的基础上衍生出更多的单词。

向量维数=词汇量(例如500000)。如果想要表示合理的大小词汇,需要很大的向量。还有一个更大的问题,理解关系和词语的意义。举个例子,在网络搜索中,如果用户搜索“西雅图汽车旅馆(Seattle motel)”,我们希望匹配包含“西雅图旅馆(Seattle hotel)”的文档。,酒店和汽车旅馆几乎是一回事。但如果使用上面讲到的独热编码,这两者之间是没有相似的关系的·。在数学上,这两个向量是正交的。

解决办法

  • 可以尝试依靠wordNet的同义词列表来获得相似性吗?
    • 但是众所周知,严重失败:不完整等等问题;
  • 在向量本身中学习编码相似性;

2.5 根据上下文来表示单词

  • 分布式语义:一个词的意思是由经常出现在它附近的词所赋予的;
    • 有了它的伙伴,你就会知道一个字;
    • 现代统计NLP最成功的思想之一;
  • 当一个单词w出现在文本中时,它的上下文是附近(在一个固定大小的窗口内)出现的一组单词 ;
  • 使用单词w的许多上下文来建立单词w的表示;

2.6 词向量

我们将为每个选择的单词构建一个密集的向量,使其与出现在类似上下文中的单词的向量相似,例如可以将单词banking表示为向量 [ 0.286 , 0.792 , − 0.177 , − 0.107 , 0.109 , − 0.543 , 0.349 , 0.271 ] [0.286,0.792,-0.177,-0.107,0.109,-0.543,0.349,0.271] [0.286,0.792,0.177,0.107,0.109,0.543,0.349,0.271]这是一个密集向量,其中所有数字都是非零的。这个例子中词向量的维度为九维,但是在实际应用中,需要使用更大的维度,一般情况下使用的维度可能是50维,300维,也可能是1000维,2000维,4000维。

提示:词向量是一种称为词嵌入或词表示的形式,它们是一种分布式表示;

2.7 词的意义作为一个神经词向量——可视化

每个单词都有一个词向量,那么就会有一个向量空间,可以在其中放置所有的单词。这个向量空间整体上不是可读的。但我们将其中一些维度进行可视化操作时,我们可以看到单词之间的一些关系。

3、Word2vec:Overview

Word2vec(Mikolov2013年提出)是一个学习词向量的框架;

想法

  • 我们有大量的文本语料库;
  • 固定词汇表中的每个单词都由一个向量表示;
  • 遍历文本中的每个位置t,其中有一个中心词c和上下文(“外部”)单词o;
  • 使用向量c和o的相似度来计算给定c的o的概率(反之亦然);
  • 不断调整单词vector来最大化这个概率;

3.1 计算 P ( w t + j ∣ w t ) P(w_{t+j}|w_{t}) P(wt+jwt)的例子窗口和过程

在这里插入图片描述
上图中的公式 P ( u p r o b l e m s ∣ v i n t o ) P(u_{problems}|v_{into}) P(uproblemsvinto)是公式 P ( p r o b l e m s ∣ i n t o ; u p r o b l e m s , v i n t o , ∣ t h e t a ) P(problems|into;u_{problems},v_{into},|theta) P(problemsinto;uproblems,vinto,theta)的缩写

3.2 目标函数

对于每个位置 t = 1 , . . . , T t=1,...,T t=1,...,T,给定中心词 w j w_j wj,预测固定大小m的窗口内的上下文单词。 似 然 函 数 = L ( θ ) = ∏ t = 1 T ∏ − m ≤ j ≤ m ( j ≠ 0 ) P ( w t + j ∣ w t ; θ ) 似然函数=L(\theta)=\prod _{t=1}^T\prod_{-m\leq j\leq m(j\neq 0)}P(w_{t+j}|w_t;\theta) =L(θ)=t=1Tmjm(j=0)P(wt+jwt;θ) θ \theta θ是所有要优化的参数,目标函数 J ( θ ) J(\theta) J(θ)是(平均)负对数似然: J ( θ ) = − 1 T ∑ t = 1 T ∑ − m ≤ j ≤ m ( j ≠ 0 ) l o g P ( w t + j ∣ w t ; θ ) J(\theta)=-\frac{1}{T}\sum_{t=1}^T\sum_{-m\leq j \leq m(j\neq 0)}log P(w_{t+j}|w_t;\theta) J(θ)=T1t=1Tmjm(j=0)logP(wt+jwt;θ)最小化目标函数等于最大化预测精度,我们的目标是最小化目标函数。

  • 问题:怎样计算 P ( w t + j ∣ w t ; θ ) P(w_{t+j}|w_t;\theta) P(wt+jwt;θ)
  • 答案:对于每一个词 w w w,我们将使用两个向量进行表示:
    • v w v_w vw表示当 w w w为中心词时的向量表示;
    • u w u_w uw表示当 w w w为上下文词时的向量表示;
  • 对于一个中心词c和上下文词o: P ( o ∣ c ) = e x p ( u o T v c ) ∑ w ∈ V e x p ( u w T v c ) P(o|c)=\frac{exp(u_o^Tv_c)}{\sum _{w\in V}exp(u_w^Tv_c)} P(oc)=wVexp(uwTvc)exp(uoTvc) 在公式中, e x p ( ) exp() exp()是取幂操作,取幂可以使任何数为正。 u o T v c u_o^Tv_c uoTvc是点积操作,表示向量o和向量c的相似性, u T v = u . v = ∑ i = 1 n u i v i u^Tv=u.v=\sum _{i=1}^nu_iv_i uTv=u.v=i=1nuivi,点积值越大表示两个向量之间越相似。 ∑ w ∈ V e x p ( u w T v c ) \sum _{w\in V}exp(u_w^Tv_c) wVexp(uwTvc)是对整个词汇进行归一化,给出概率分布。

对于softmax,有: s o f t m a x ( x i ) = e x p ( x i ) ∑ j = 1 n e x p ( x j ) = p i softmax(x_i)=\frac{exp(x_i)}{\sum _{j=1}^nexp(x_j)}=p_i softmax(xi)=j=1nexp(xj)exp(xi)=pi

  • softmax函数将任意值 x i x_i xi映射到概率分布 p i p_i pi
    • “max”:放大了最大值 x i x_i xi的概率;
    • “soft”:仍然给较小的 x i x_i xi赋值一些概率;
    • 频繁用于深度学习;

3.3 通过优化参数来训练模型

  • 为了训练模型,我们调整参数以使损失最小化;
  • 对于两个参数上的简单凸函数;
  • 等高线表示目标函数的级别;
    在这里插入图片描述

3.4 训练模型:计算所有向量梯度

  • 回忆: θ \theta θ在一个长向量中代表模型的所有参数;
  • 在我们的例子中是d维向量和v 个单词;
  • 记住:每个单词有两个向量,中心词向量和背景词向量;
  • 我们沿着梯度下降来优化参数;
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数字乡村和智慧农业的数字化转型是当前农业发展的新趋势,旨在通过应用数字技术,实现农业全流程的再造和全生命周期的管理服务。中国政府高度重视这一领域的发展,提出“数字中国”和“乡村振兴”战略,以提升国家治理能力,推动城乡融合发展。 数字乡村的建设面临乡村治理、基础设施、产业链条和公共服务等方面的问题,需要分阶段实施《数字乡村发展战略纲要》来解决。农业数字化转型的需求包括满足市民对优质农产品的需求、解决产销对接问题、形成优质优价机制、提高农业劳动力素质、打破信息孤岛、提高农业政策服务的精准度和有效性,以及解决农业融资难的问题。 数字乡村建设的关键在于构建“1+3+4+1”工程,即以新技术、新要素、新商业、新农民、新文化、新农村为核心,推进数据融合,强化农业大数据的汇集功能。数字农业大数据解决方案以农业数字底图和数据资源为基础,通过可视化监管,实现区域农业的全面数字化管理。 数字农业大数据架构基于大数据、区块链、GIS和物联网技术,构建农业大数据中心、农业物联网平台和农村综合服务指挥决策平台三大基础平台。农业大数据中心汇聚各类涉农信息资源和业务数据,支持大数据应用。信息采集系统覆盖市、县、乡、村多级,形成高效的农业大数据信息采集体系。 农业物联网平台包括环境监测系统、视频监控系统、预警预报系统和智能控制系统,通过收集和监测数据,实现对农业环境和生产过程的智能化管理。综合服务指挥决策平台利用数据分析和GIS技术,为农业决策提供支持。 数字乡村建设包括三大服务平台:治理服务平台、民生服务平台和产业服务平台。治理服务平台通过大数据和AI技术,实现乡村治理的数字化;民生服务平台利用互联网技术,提供各类民生服务;产业服务平台融合政企关系,支持农业产业发展。 数字乡村的应用场景广泛,包括农业生产过程、农产品流通、农业管理和农村社会服务。农业生产管理系统利用AIoT技术,实现农业生产的标准化和智能化。农产品智慧流通管理系统和溯源管理系统提高流通效率和产品追溯能力。智慧农业管理通过互联网+农业,提升农业管理的科学性和效率。农村社会服务则通过数字化手段,提高农村地区的公共服务水平。 总体而言,数字乡村和智慧农业的建设,不仅能够提升农业生产效率和管理水平,还能够促进农村地区的社会经济发展,实现城乡融合发展,是推动中国农业现代化的重要途径。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值