论文阅读:Detection of Sleep Apnea from Single-Lead ECG Signal Using a Time Window Artificial Neural Network
一、摘要
在这个研究中,我们开发了一个时间窗人工神经网络,该网络可以利用ECG信号段之间的时间依赖性,并且不需要关于训练数据分布的任何先验假设。通过在真实的ECG信号数据集上进行验证,与传统的非时间窗机器学习方法以及以前的工作相比,我们的方法的性能得到了显着改善。
二、数据
在这项研究中,菲利普斯大学的Thomas Penzel博士提供的PhysioNet呼吸暂停心电图数据集用于构建和测试我们提出的方法[ 18,19]。该数据集包括一个释放集和一个保留集,每个集包含从PSG记录中提取的35个ECG信号记录,分辨率为16位,采样率为100 Hz。对于这些ECG信号记录的每个1分钟片段,专家会在PSG中组合其他信号(即呼吸,氧饱和度)以注释SA或正常。总计34,313个1分钟的ECG分段,其中已释放的组合包含17,045,保留的组合包含17,268。注释中的呼吸不足和呼吸暂停没有区别。此外,根据AHI值(每小时的呼吸不足次数和呼吸暂停事件数),将这些ECG信号记录分为三类(A,B和C)。当记录的AHI值小于5时,将其定义为C类,即正常。当记录的AHI值大于10时,它被定义为A级,即呼吸暂停。在两次记录之间,睡眠期间AHI为5或更高的记录被定义为B类(边界呼吸暂停)。表中列出了数据集的详细信息S1。通常,发布的集合用于模型构建和参数估计,而保留的集合用于测试模型。
三、特征提取
在以前的研究中,从RR间隔和R峰幅度中提取了各种特征。在这里,我们结合了从RR间隔中提取的12个特征和从R峰幅度中获得的6个特征来构建模型。这6个时域特征如下:MRR(RR间隔的平均值),MHR(心率的平均值),RMSSD(相邻RR间隔之间的差异的均方根),SDNN(RR间隔的标准偏差),NN50(相邻的RR间隔超过50毫秒)的数目,和PNN50(NN50除以RR间隔的[数)23,24 ]。R-峰值幅度和RR间隔的功率谱密度具有可用于诊断SA [相似的特征22,28 ]。因此,除了RR间隔的频率特征外,我们还从R峰振幅中提取了上述6个频率特征(VLF,LF,HF,LF /(LF + HF)和HF /(LF + HF))用于构建模型。
由于这些特征的分布非常不同,因此在特征提取之后,进行归一化。
ECG信号段之间存在时序依赖性。但是,以前的研究使用从当前ECG信号段中选择的特征作为输入。这通常意味着算法的输出仅取决于当前的ECG信号段特征。因此,为考虑先验输入特征,我们提出了一种基于时间窗的人工神经网络方法。对于特定的时间窗口大小,该方法收集时间窗口内的所有过去特征和当前特征作为对学习算法的输入。在这项研究中使用的时间窗口是5(图S1),它是通过交叉验证在发布的集合中选择的[ 33 ]。图3说明了我们提出的方法的方案。值得注意的是,本研究中使用的时间窗口是移动时间窗口,其中每个随后的窗口仅相差一个数据点。
四、结果
1.按照片段细分
如上所述,这些记录的每个ECG信号被分割成1分钟的片段,并且每段SA检测是指确定每个1分钟的片段是SA还是正常的。这是诊断可疑患者SA的重要依据。因此,我们首先分析我们提出的方法以及几种非时间窗方法的性能,这些方法包括每段SA检测中的线性判别分析(LDA),支持向量机(SVM),逻辑回归(LR)和MLP。表1列出了这些方法的准确性,敏感性,特异性和AUC。如表1所示,传统的非时间窗方法具有类似的性能;准确度约为81.0%,AUC在0.866至0.885之间。与传统的非时间窗机器学习方法相比,我们提出的TW-MLP方法的性能得到了显着提高。例如,与最佳精度的传统非时间机器学习窗口LDA方法相比,TW-MLP的准确性,灵敏度,特异性和AUC分别提高了5.5%,14.2%,0.3%和0.065。同样,采用时间窗口后,MLP的准确性,敏感性,特异性和AUC分别提高了5.9%,10.8%,3%和0.06。一般而言,与传统的非时间窗机器学习方法相比,我们提出的方法具有最佳性能
2.按记录分类
LR的准确性,敏感性,特异性,AUC和相关值分别为91.4%,100.0%,75.0%,1.000%和0.850。而TW-MLP的相应值分别为97.1%,100.0%,91.7%,1.000和0.935。此外,为确保临床应用的可靠性,我们还使用Bland-Altman图来验证TW-MLP AHI和实际AHI的一致性,如图4所示。结果表明,该方法具有良好的一致性。通常,在按记录分类时,时间窗口可以有效地改善我们方法的性能,其结果与实际AHI一致。
五、结论
这项研究的目的是开发一种快速,便携式的自动睡眠呼吸暂停检测方法。为了实现这一目标,基于Song等人发现的时间依赖性。[ 3],我们提出了一种使用单导联ECG信号的时窗人工神经网络(TW-MLP)方法。与现有技术相比,我们的方法不仅利用了ECG信号段之间的时间依赖性,而且避免了数据分布对性能的影响。通过在PhysioNet呼吸暂停-ECG数据集中进行验证,与传统的非时间窗口机器学习方法以及以前的工作相比,我们的方法可以有效地检测睡眠呼吸暂停并进一步提高其性能。同时,TW-MLP AHI和实际AHI的Bland-Altman图表明,我们的方法是一致的,可以作为医师进行初筛的替代方法。尽管我们取得了良好的性能,但是仍然存在一些限制和可能的改进。18 ]。在未来的研究中,我们将考虑合并多个数据库以检测不同类型的呼吸暂停。此外,我们参考以前的研究提取了各种有用的功能,并获得了更好的性能。但是,特征提取过程容易受到研究人员经验的影响。近年来,一些研究表明,卷积神经网络(CNN)可以自动提取良好的特征[ 36 ],可以将其视为特征提取步骤。