关注并星标
从此不迷路
计算机视觉研究院
公众号ID|ComputerVisionGzq
学习群|扫码在主页获取加入方式
计算机视觉研究院专栏
作者:Edison_G
今年春节前,波士顿动力机器人又在朋友圈炸场了!
当工人需要工具包时,机器人迅速定位到工具包,携带工具包自主搭桥、上楼梯,动作敏捷高效。然后,其将工具包扔给工人,完成任务后体操式前空翻落地,一气呵成!
这不是波士顿动力人形机器人Atlas的第一次秀了,一年多前,Atlas展示了在一系列倾斜木板还有木箱垒成的阶梯的复杂场景中跑酷,如履平地,表现甚至超越人类。
波士顿动力机器人为什么这么智能?它是如何像人一样可以在复杂的环境下自主运动的呢?
其背后的核心技术之一就是机器人感知。
Atlas头部安装的深度相机以15帧每秒的速度生成环境的点云,然后用提供的环境地图确定自己在空间中的位置和姿态,同时感知环境中的障碍物和平面。
这是机器人能够准确完成自主运动的关键技术。
机器人自主运动离不开最近几年非常火的机器人同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术。
SLAM技术最早应用于潜艇、太空车等军用领域,之后逐渐进入民用领域。
最近几年学术界诞生了大量优秀的SLAM算法框架,并且随着三维传感器的飞速发展和嵌入式设备算力的快速提升,SLAM技术开始大规模商业化应用,包括但不限于服务机器人、自动驾驶车辆、增强现实智能穿戴设备、智能无人机等。
下面是当前主流视觉惯性SLAM的对比:
主流视觉惯性SLAM对比
学习SLAM的优选好书
目前SLAM相关的书籍比较少,虽然它们涵盖了该领域的核心知识点,公式推导严谨,有的还配套有重要概念的代码实现。
但是,很多初学者在掌握了SLAM基础知识后发现距离真正的项目实践还有较大差距,他们对于如何开始自己的第一个SLAM项目实践比较迷茫。
《视觉惯性SLAM:理论与源码解析》则致力于解决这个问题,本书选取了经典的视觉SLAM框架和目前综合效果最好的视觉惯性SLAM框架进行庖丁解牛,引导读者循序渐进掌握自己的第一个SLAM项目。
开源代码配套详细的中文注释
如果喜欢本文
欢迎 在看丨留言丨分享至朋友圈 三连
快在留言区大声告诉我们
截止3月15日晚24点
包邮送3本价值新书
参与方式:本文留言区留言想要这本书的理由(需要和本书内容相关,否则不会精选),截止时间点赞排名前3名即可获得。
END
计算机视觉研究院学习群等你加入!
ABOUT
计算机视觉研究院
计算机视觉研究院主要涉及深度学习领域,主要致力于目标检测、图像分割、模型量化、模型部署等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!
VX:2311123606