Transformer手撕BP,当场拿了offer

最近面试大厂算法&开发岗,不仅让手写Transformer代码,甚至手撕BP算法,面试八股也是标配,总结了一下面试官必问的10个问题:

解释多头注意力机制;简述常见注意力机制;介绍Transformer的QKV;Transformer位置编码的优缺点;详述Encoder及Decoder模块;Transformer残差结构及意义;解释Transformer并行性;Transformer与CNN/RNN/LSTM的区别;详述ViT等CV方向的应用;Transformer与Mamba的区别。

从Transformer的模型架构,到近年数篇里程碑式论文,为了帮助大家掌握面试重点,研梦非凡特邀请了世界Top10高校博士,发表过10+篇顶会的杨导师,独家开讲《求职充电季—Transformer系列论文课程》以Transformer为主线,全面介绍注意力机制在NLP、CV等研究领域的发展历程,9节论文精讲直播课,带大家吃透9个面试必问模型,校招社招狂接offer!

618活动现仅需 9.9元 

👇🏻 扫码加助教下单立享福利价!

f171c7ff297657b5400e75848d54d98a.png

免费领取原创课件、9节课程论文&源码+百篇Transformer论文&书籍+文末更多科研福利

6051c6641f9637075f07e57008298c55.gif

一、课程收获

9篇Transformer必读论文get!代码复现能力up!

  • 全面掌握Attention机制在NLP、CV等研究领域的发展历程

  • 深入理解Transformer于不同模态中的具体应用,盘点9个必备模型代码+复现过程

  • 了解多个研究领域的最新技术,对比分析各模态中的优劣及前景

  • 掌握面试常见Transformer考点,助力大厂校招社招

二、课程大纲

🔸第1课 Attention Is All You Need

Transformer模型必学开山之作!

9c3b58005996e4c65fb7a9753038fb8a.png

直播预告:

  • Transformer模型的基本结构、组成及关键组件(面试必问!)

  • 对比RNN和Transformer在处理序列数据时的不同策略

  • 自注意力机制如何捕捉序列内部的长距离依赖关系、如何实现并行计算

  • Transformer在机器翻译、文本摘要等任务中的应用案例

🔸第2课 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding(包括代码复现)

基于Transformer架构预训练技术Google开发的革命性NLP模型

ba005c70fb284c96e1af172ced87172d.png

直播预告:

  • BERT模型在NLP任务中的革命性影响、创新点讲解、预训练目标和训练策略

  • MLM任务、NSP任务如何帮助模型捕捉语言的复杂性

  • 解释Transformer的编码器结构,讨论多头注意力机制在BERT中的应用(面试必问!)

  • 讨论RoBERTa、ALBERT等变体对BERT模型的改进和优化(涨点必学!)

🔸第3课 (ViT) An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(包括代码复现)

必学——实现了Transformer在计算机视觉中的首次应用!

081fbfb331858349885738498047d4a6.png

直播预告:

  • 学习ViT模型在图像识别任务中的创新点、影响及基本结构

  • ViT模型的动机和目标,对比ViT与CNN在图像处理上的差异

  • patches如何被编码成序列以适应Transformer模型

  • 讨论多头自注意力机制在ViT中的应用(面试必问!)

  • ViT模型的预训练策略,以及在不同规模数据集上的性能表现涨点必学!

🔸第4课 Swin Transformer:Hierarchical Vision Transformer using Shifted Windows(包括代码复现)

业界创新——Transformer在高分辨率影像领域的应用!

384ae90364482ebd14f31bf6647fc00e.png

直播预告:

  • Swin Transformer移动窗机制处理高分辨率图像的工作原理(魔改第一步!)

  • 分块标准化(Shifted Window)关键技术

  • Swin Transformer在图像识别任务中的模型优化特征提取能力(笔试考点!)

  • Swin Transformer模型在多模态任务中的应用前景

🔸第5课 SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers(包括代码复现)

利用TransformerEncoder-Decoder结构,在没有使用任何额外如位置编码或非局部信息的情况下,进行语义分割,并取得突出效果!

2f1433b242865e33c3dd3b65324e12be.png

直播预告:

  • Transformer结构对细粒度视觉任务的适应性

  • SegFormer模型的动机、目标及Encoder-Decoder结构(面试必问!)

  • SegFormer如何在不同尺度上捕捉特征,其简洁性和效率,以及其对性能的影响

  • SegFormer的语义分割流程:Transformer应用于语义分割任务流程(手撕考点!)

🔸第6课 ViLT:  Vision and Language Transformer Without Convolution or Region Supervision(包括代码复现)

ViLT直接使用序列输入进行多模态融合和理解,省去了特征提取阶段,取得了和CNN相当或更好的效果!

d88a83abc9afb6374f2089bf3a55935c.png

直播预告:

  • ViLT模型的核心创新、模型结构和关键组件

  • ViLT处理多模态数据时的有效融合方法

  • ViLT的效率和效果、性能评估对比(与CNN区别)(面试必问!)

  • ViLT改进Transformers在不同模态之间的应用工作

🔸第7课 (GPT-4)Toolformer:  Language Models Can Teach Themselves to Use Tools(包括代码复现)

Transformer在GPT-4的应用,大语言模型必学!

d312eb9ab3888ec340745741a8042572.png

直播预告:

  • 语言模型在智能助手和自动化任务中的应用、创新之处和研究动机

  • Toolformer模型的基本结构、工作原理、关键技术,如强化学习、模仿学习等

  • Toolformer经过训练能够决定调用哪些API、何时调用它们、传递什么参数以及如何最佳将结果合并到未来的token预测中

🔸第8课 Scalable Diffusion Models with Transformers(包括代码复现)

Transformer+扩散模型利用Transformer处理高维度数据,实现了先进的可生成视觉效果!

e63bc59578328acbc8eef902d02ce2d5.png

直播预告:

  • Transformer在生成扩散模型中的应用及其潜力

  • Transformer如何适应高维度数据处理

  • 基于Transformer的扩散模型架构,利用Transformer生成高维度的视觉数据(面试必问!)

  • 对比传统扩散模型和基于Transformer的模型性能

🔸第9课 Mamba: Linear-Time Sequence Modeling with Selective State Spaces(惊喜彩蛋!!!后续还会加课哦!)

d995b3518f1300219dd48a5c690f42d5.png

618活动现仅需 9.9元 

👇🏻 扫码加助教下单立享福利价!

3ea1590d5492c69b40d7a0cb4a743ed8.png

三、讲师介绍

杨导师

 学术背景  世界Top10大学计算机科学毕业博士。主要研究方向为计算机视觉、自然语言处理、高效的深度学习训练和推理方法、大语言模型轻量化与高效微调技术。曾在多家公司担任算法研究员,涉及计算机视觉、高效模型压缩算法、多模态大语言模型的相关研究,包括模型量化、剪枝、蒸馏、编译、高效稀疏化训练与推理

 科研成果  在国际顶级会议CVPR、ICCV、EMNLP等发表10+篇论文,并担任CVPR、ICCV、ECCV、ICML、ICLR、NeurIPS等重要会议和期刊审稿人;拥有多项发明专利,指导学生有耐心,教学严谨,思维逻辑缜密,论文指导经验丰富

 招收学生方向  计算机视觉、自然语言处理、高效模型压缩算法、多模态大语言模型,包括模型量化、剪枝、蒸馏、编译、高效稀疏化训练与推理、深度学习全栈研究

四、适合人群

  • 热爱计算机科学研究,对自然语言处理、计算机视觉、大语言模型、多模态算法,尤其以Attention为主的模型核心发展脉络,拥有浓厚兴趣的同学

  • 意向深造、跳槽、转行的在职同学

  • 计算机科学或交叉领域的本硕博在读同学

五、课程形式及时长

 上课方式   线上直播课,每节1小时左右,具体以实际时长为准

 上课时间   共9节,暂定每周1节

 课程价格   原价599元,现价9.9,再送价值99元的7节论文写作指导课

618活动现仅需 9.9元 

👇🏻 扫码加助教下单立享福利价!

8775e54b72c580a2a84d2066e21cd4e1.png

六、课程服务

  • 配套课程资料:课程PPT、Transformer论文及相关开源代码

  • Transformer交流群(助教答疑,资料更新)

七、Q&A

Q1:学习过程中若有问题,如何咨询老师?

A:本系列课程为直播课,大家有任何疑问,可在直播间发送提问,老师会实时一一解答

Q2:课程及相关服务有效期多久?

A:课程有效期为永久回放

618活动现仅需 9.9元 

👇🏻 扫码加助教下单立享福利价!

48e2f901ee6f3188628a9faab471e0a6.png

研梦非凡两类科研论文指导方案

科研论文idea,并非拍脑门就能产生,需要经过一遍遍做实验、跑代码、改模型、思路修正。研梦非凡专业论文指导,和研梦导师一起找idea,共同解决科研问题。授之以渔——搭建论文写作框架,增删改查,针对性实验指导!哪里薄弱补哪里!

a7c4f1e28a5de493da558686911db43b.jpeg4a4d6e8a961f9601496378e08f137f62.jpeg

<<< 左右滑动见更多 >>>

👇🏻 扫描二维码咨询助教两种指导方案

fb1153e77ee91d6c7cfe2cf20825bf89.png

研梦非凡部分导师介绍

研梦非凡的导师,来自海外QStop200、国内华五、C9、985高校的教授/博士导师/博士后,世界500强公司算法工程师,以及国内外知名人工智能实验室研究员。

这是一支实力强大的高学历导师团队,在计算机科学、机器学习、深度学习等领域,积累了丰富的科研经历,研究成果也发表在国际各大顶级会议和期刊上,在指导学员的过程中,全程秉持初心,坚持手把手个性化带教。包括但不限于以下导师~

27f91acdd1d9d673d02f03c9d1391602.pngb73358a6afdce686edc8667d6d1debed.pnga5c3f2be56cb9f8e603f7b3502e5be68.png9705d6e37be6947554a841a5506c4fe5.png

<<< 左右滑动见更多 >>>

👇🏻 扫码加助教为你匹配合适课题的大牛导师

f3882ced3ff8a973aa31077db2b2040e.png

研梦非凡科研福利

🌟90分钟人工智能零基础入门课免费领

🌟7小时科研论文写作系列课免费领

🌟14节前沿论文直播课程免费领

🌟50小时3080GPU算力免费领

🌟数百篇5月论文资料大合集免费领

🌟报名本课,赠送原价2999元的1小时导师meeting(助教+导师)

👇🏻 扫码领取以上6重粉丝专属科研福利!

9eb4e9fb141f49732b00a86d4e14d0d2.png

33adf667ea2fb794ca85d98ddcb14eca.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值