从Mamba到xLSTM,魔改U-net杀疯了!

人工智能在医疗领域的交叉应用,如今成为最热门的研究方向之一,医学图像与深度学习技术的结合,在图像分类、检测、分割等任务中,创新成果不断,并以医学图像分割为首,2015年提出的UNet网络,至今十年,仍是顶会顶刊或医学挑战赛,必不可少的改进基础,今年大火的Mamba、KAN、xLSTM,基于UNet优化后的架构,也屡次刷新了SOTA!

a33b10118f36ba293b0cd86c9134a7ec.png

为了帮助大家掌握UNet及具体改进idea,研梦非凡于7月18日(周四),邀请了手握多篇SCI一作、MICCAI'22挑战赛获奖的崔导师,独家分享最新成果《医学图像之气道树分割基于UNet创新》(AI前沿直播课NO.55),从肺部气道分割赛道切入,分析临床背景、面临挑战,再到气道分割技术路线,并重点讲解方法创新点,最后详解实验结果、模型部署,1节课高起点入门医学图像分割及UNet改进!

👇🏻扫描二维码找助教0元直播课!

240fab3391ad577958030854ef8f50cf.png

凡预约即可免费领取UNet(改进)30篇精选论文+其他方法10篇+ATM'22挑战赛综述+文末还有算力等科研福利!

1cc816850a37eabe9316556f47b74df1.gif

直播课内容概览

00 临床背景

  1. 气道分割的概念

  2. 基于CT的精确分割

  3. 气道树模型在支气管镜导航系统中的应用

01 面临的挑战

  1. 过分割;断裂、破损;严重类内不平衡

  2. 原因分析

  • 训练数据无法有效覆盖所有小气道分支

  • 一般分割模型及损失函数,面对复杂的气道树拓扑结构,存在明显的局限性

02 气道树分割技术路线

  1. 肺部CT数据来源及构建

  2. 训练数据、数据采样模块、分割模型、自适应权重损失函数等流程

03 气道树数据采样策略

  1. 骨架采样策略

  2. 小气道分支采样策略

04 气道树分割模型架构(重建拓扑结构)

  1. ConvBlock结构

  2. ATUNet模型

  3. Multi-Spatial Excitation(SE)等组成

05 自适应权重的Dice

  1. 位于较粗的气道vs位于较细的气道

  2. 权重分配原则、公式

  3. 自适应权重的卷积核大小优选

  4. Loss值计算公式

06 实验结果

  1. 采用的评估指标:BD(分支检测率)、TD(树长检测率)、Dice和Precision

  2. ATM22数据集

  3. 基于不同方法的对比实验

  4. 基于不同组件的消融实验

  5. 模型部署

  • Pytorch构建训练模型

  • Onnx简化模型结构

  • Onnx Runtime加速推理

07 总结与讨论

  1. FP(假正例)主要分为两类

  2. FN(假负例)的分布

  3. 定性的讨论

导师介绍

  崔导师

【研究经历】现任医疗上市公司高级算法研究员,主要研究方向为,医学影像分析、多模态医学影像大模型、深度学习、机器学习等。

【科研成果】近年发表数十篇相关学术论文,其中,SCI论文7篇,授权发明专利两项,获MICCAI2022挑战赛第二名,并担任PhysicsinMedicineandBiology(PMB)和IEEEAccess期刊审稿人,学生论文指导经验十分丰富。

直播福利

参加本次直播的同学都将获得1小时导师meeting的福利(助教+导师)!原价2999,限时福利价9.9元活动时间为7月18日到7月31日。

ps:研梦非凡开设的前沿论文系列直播,旨在帮助大家提升读论文技能,快速抓住重点,掌握有效方法,进而找到创新点,轻松完成论文报告。

👇🏻扫描二维码找助教0元直播课!

83b91ba27402023b177b21802d196898.png

凡预约即可免费领取UNet(改进)30篇精选论文+其他方法10篇+ATM'22挑战赛综述+文末还有算力等科研福利!

7bab57981fe31e0c8ac3237fa010d471.gif

研梦非凡科研论文指导

如果你的研究方向/方法/idea是属于CV全方向/NLP全方向/机器学习/深度学习及AI+金融、医疗、交通等方向,如果你需要发CCF A-C、SCI一区-四区、EI会议/EI期刊、毕业大论文、毕业设计等,都可以来研梦非凡,匹配合适的科研指导。

研梦非凡可指导的研究方向

38ba2481b332f6d37a0c86e1510c853a.jpeg

主流方向科研论文常用方法

77e1793562129a10cf3e347cc17111ea.jpeg

研梦非凡现有idea

419bcd225bd43455e965061709090177.png

👇🏻扫码找助教了解更多/验证自己的idea是否可行

d8b78c27e266576d9f8174342ca8d564.png

研梦非凡科研论文指导方案

idea并不是直接拍脑门拍出来的,是一遍一遍实验、跑代码、改模型、思路修正的过程中产生的。研梦非凡1V1定制化论文指导,和研梦导师一起找idea,研梦导师指导实验,共同解决数据问题。授之以渔——搭建论文写作框架,增删改查,针对性实验指导!哪里薄弱补哪里!

f8c77ba2adab5a548640b9eaf88dfdff.jpegbfbbc209eee8df844b36e4d3c92797f1.jpeg

<<< 左右滑动见更多 >>>

👇🏻扫描二维码咨询助教两种指导方案

2a0e1a4a284b5b6028ce87d35e234089.png

研梦非凡部分导师介绍

研梦非凡导师团队,来自海外QStop200、国内华五、C9、985高校的教授/博士导师/博士后,以及世界500强公司算法工程师、国内外知名人工智能实验室研究员等。

这是一支实力强大的高学历导师团队,在计算机科学、机器学习、深度学习等领域,积累了丰富的科研经历,研究成果也发表在国际各大顶级会议和期刊上,在指导学员的过程中,全程秉持初心,坚持手把手个性化带教。包括但不限于以下导师~

c41277bdb99011d25ba80ee5d4067a34.pnge90fa02244ab5f00a4fa74f5f1e0ca1b.pngfa9e1ebf4aefc8cfba9a699ddb7c742a.png8aa2e7822b288073a11eb36731006cf3.png

<<< 左右滑动见更多 >>>

👇🏻扫码加助教为你匹配合适课题的大牛导师

e13f1db646ac5211b0d90cf038ab8c4b.png

研梦非凡科研福利

🌟90分钟人工智能零基础入门课免费领

🌟7小时科研论文写作系列课免费领

🌟数十节前沿论文直播课程免费领

🌟50小时3080GPU算力免费领

🌟百篇7月论文资料大合集免费领

🌟报名本次直播课,9.9元即可享受原价2999元的1小时导师meeting(助教+导师)! 

👇🏻扫码领取以上6重粉丝专属科研福利!

9a46f65e0ae93ee8af4329c4b94f4c7c.png

8d0d20261be5526b4c9d04af548b7422.jpeg

人划

### Mamba-inMamba U-Net 使用指南 #### 安装教程 对于希望安装并使用 Mamba-inMamba U-Net 的用户来说,理解正确的安装流程至关重要。首先应当访问官方发布的页面获取最新版本的 `mamba` 软件包,该链接位于 GitHub 上[state-spaces/mamba/releases][^1]。 考虑到兼容性问题,在安装过程中需要注意 `mamba-ssm` 需要与特定组件一同安装,比如 `casual-conv1d`,并且确保所使用的 CUDA 和 PyTorch 版本相互匹配[^3]。这一步骤可以通过仔细阅读目标仓库中的 `requirements.txt` 文件来确认所需依赖项的具体版本号。 针对 Ubuntu 用户而言,建议直接从 Releases 页面挑选适合当前系统的预编译二进制文件进行部署[^4]。而不仅仅是局限于通过 pip 工具来进行简单的命令行操作,因为后者可能会遇到各种未预见的技术难题[^2]。 #### 解决常见问题 如果在尝试执行 `pip install mamba-ssm` 命令时遇到了困难,则可能是因为环境配置不当或者存在其他潜在冲突所致。此时可以考虑先清理已有的 Python 环境变量设置,并重新创建一个新的虚拟环境后再试一次;另外也可以参照社区反馈寻找相似案例及其解决方案作为参考。 为了更好地支持模型训练过程以及提高性能表现,推荐按照文档指示完成必要的硬件驱动更新工作,特别是显卡驱动程序方面的要求。同时也要留意是否有新的补丁发布用于修复之前发现的安全漏洞或是功能缺陷等问题。 ```bash # 创建并激活新虚拟环境 (Python 3.x) python3 -m venv myenv source myenv/bin/activate # Linux 或 macOS 下 myenv\Scripts\activate # Windows 下 # 升级 pip 到最新版 pip install --upgrade pip setuptools wheel # 根据 requirements.txt 安装所有依赖项 pip install -r path/to/your_requirements_file.txt ``` #### 使用方法概述 一旦成功完成了上述准备工作之后,就可以着手探索如何利用 Mamba-inMamba U-Net 实现图像分割任务了。通常情况下,开发者会提供详细的 API 文档帮助初学者快速入门,其中包括但不限于数据集准备、参数调整策略等方面的内容。此外还可以关注相关论坛上的讨论帖获得更多的实践经验和技巧分享。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值