Stable Diffusion原始作者创业|华为“第四界”开始冲刺|英伟达,准备砸出黄金坑|微软倒搭钱苹果也不用必应|谷歌DeepMind缔造终身学习智能体

  • StableDiffusion原始作者创业,井喷的AI视觉再添新玩家
  • 7.5K星开源项目“白做了”?OpenAI发布开发者最期待的头号功能,让多个优秀开源项目瞬间凉了
  • 中国版“星链”成功发射首批组网星,预计今年发射108颗低轨卫星,最终规模达到上万颗
  • 陶哲轩赵宇飞学生联手攻下组合数学难题,23年来首次突破
  • 华为“第四界”开始冲刺,招300名豪车专家,先造38台测试车
  • 英伟达,准备砸出黄金坑
  • 卷技术、拓场景,动力电池厂商艰难求生
  • 谷歌反垄断案裁决细节大曝光:微软倒搭钱苹果也不用必应?
  • 三「模」联盟,谷歌DeepMind缔造终身学习智能体
  • OpenAI押宝的最强机器人,能打败特斯拉Optimus吗?
  • 入不敷出的大模型厂商,是否可以相信“周鸿祎方法论”?
  • 余承东摸着雷军大冒险

Stable Diffusion原始作者创业,井喷的AI视觉再添新玩家

从2023年下半年起,视觉大模型领域进入爆发期,MidJourneyV6、Sora、StableDiifusion3-Ultra等引领潮流。视觉模型创业热潮持续,BlackForestLabs作为StableDiffusion原班人马创立,推出12B超大尺寸的视觉大模型FLUX.1,采用DiT架构,性能媲美先进模型,获得AndreessenHorowitz领投的3100万美元种子轮融资。FLUX.1支持API和Apache2.0开源许可,为开发者提供低成本使用强大视觉基础模型的机会,注入AI社区活力。该模型系列采用DiT架构、构建流匹配、旋转位置嵌入等技术,提升图像细节、提示遵循、风格多样性和复杂性。FLUX.1家族包括性能版、开源权重版和快速推理版,与主流视觉模型对比表现出色。BlackForestLabs专注于解决视觉模型的起点需求,让开发者和产品工程师专注于终端用户体验。视觉模型井喷的原因在于其在真实世界中的应用价值,Transformer模型和AI模型本质的预测与压缩特性使其更接近实现通用人工智能(AGI)。视觉模型创业与应用分为模型派和应用派,模型派聚焦于底层模型研发,应用派则侧重于构建应用生态。开源模型对于AI开发者社区和创业生态至关重要,有助于推动模型应用创新。
在这里插入图片描述

7.5K 星开源项目“白做了”?OpenAI 发布开发者最期待的头号功能,让多个优秀开源项目瞬间凉了

OpenAI已发布重量级新功能,旨在解决大语言模型(LLM)在处理JSON文件时产生的问题,如生成仅部分遵循指令的响应或无法完全解析JSON内容。此新功能通过在API中加入结构化输出,确保模型生成的输出与JSON模式相匹配。JSON作为一种广泛使用的数据格式,因其简单性、灵活性及与其他编程语言的良好兼容性受到欢迎。结构化输出功能不仅提升了模型对复杂数据模式的理解能力,还允许开发者约束模型以匹配特定数据模式,避免遗漏关键信息或生成无效枚举值。此外,此功能支持分步生成答案,简化提示词,并提供拒绝不安全请求的能力。尽管这一新功能尚处于Beta测试阶段,存在生成首个token速度较慢的问题,且API支持的JSON模式有限,但它标志着OpenAI对开源社区贡献的认可,并有望成为软件开发者集成大模型至自有代码的主要方式。

中国版“星链”成功发射首批组网星,预计今年发射108颗低轨卫星,最终规模达到上万颗

8月6日,中国“千帆星座”首批18颗卫星成功发射,标志着我国在全球卫星互联网领域的重大进展。这一计划预计年内发射108颗卫星,最终目标是组建上万颗卫星的庞大星座。自从商业航天被纳入政府工作报告后,相关板块持续受到利好影响。作为“千帆星座”的实施主体,上海垣信卫星得到了包括上海联和投资、中国电信、国开投资基金、中科创星等在内的众多资本支持,并在2月份完成了67亿元的A轮融资。据透露,上海垣信卫星今年的目标是发射108颗卫星,以此为基础逐步扩大至上万颗卫星的规模。这一项目不仅体现了地方政府与社会资本的紧密合作,还预示着中国在卫星互联网领域的雄心壮志。随着“千帆星座”项目的推进,相关概念板块在资本市场表现活跃。卫星互联网被视为航天产业的新蓝海,低轨卫星星座因其独特的性能优势,有望在多个领域实现广泛应用,推动全球卫星通信产业的快速发展。
在这里插入图片描述

陶哲轩赵宇飞学生联手攻下组合数学难题,23年来首次突破

陶哲轩和赵宇飞的学生James Leng、Ashwin Sah 和 Mehtaab Sawhney,通过结合赵宇飞和另一位菲尔兹奖得主蒂莫西·高尔斯的理论,对组合数学领域内的塞迈雷迪定理进行了重大突破。塞迈雷迪定理涉及整数集中的等差数列问题,其核心是若一个整数集具有正的自然密度,则无论正整数k为何值,都能在该集中找到长度为k的等差数列。在长达23年的研究空白后,三位年轻数学家通过应用高尔斯U^(k+1)范数的逆定理,成功推导出k=5时的更精确上界,并进一步推广至任意k值,这是自1975年塞迈雷迪首次证明以来的最重大进展。这一突破性成果不仅展示了组合数学领域的复杂性和挑战性,也体现了年轻一代数学家的创新能力和合作精神。

华为“第四界”开始冲刺,招300名豪车专家,先造38台测试车

"华为第四界"尊界项目取得实质性进展,包括商标转让和员工招聘加速。首款车型计划于2025年一季度上市,重点招聘质量部门人员,要求8年以上高端车项目经验。车型为5.2米长、3.2米轴距的MPV,规划年产能3.5万辆。江淮汽车新工厂建设提速,准备生产基于X6平台的车型,预计年产量20万辆。鸿蒙智行品牌商标归属明确,华为已启动商标转让流程。尊界项目在2024年加速推进,预计首款车型将于次年一季度上市,江淮计划制造38台测试车。

英伟达,准备砸出黄金坑

上周,一系列负面消息冲击美股,尤其针对英伟达,导致其股价波动剧烈。英伟达面临多重挑战,包括苹果在TPU上的AI模型选择、下一代GPU Blackwell的发货时间推迟、美国司法部门的反垄断调查,以及与客户的合作关系紧张。市场担忧英伟达在AI领域的后期回报,并对估值过高表示担忧。尽管英伟达在AI芯片领域占据主导地位,但延迟的芯片交付和潜在的反垄断调查引发了市场的不安。短期内,英伟达的最大担忧是大客户库存饱和和需求不足,这可能导致后续增长预期下调。然而,英伟达正通过多元化业务策略,如DGXCloud云服务,以减轻对单一市场和客户的依赖。长期来看,英伟达面临着来自竞争对手和科技巨头自研芯片的挑战,但其强大的软件和硬件生态系统为公司提供了稳固的竞争优势。

卷技术、拓场景,动力电池厂商艰难求生

国内动力电池产业正经历第三次历史周期洗牌,宁德时代等龙头厂商营收下滑,二三线厂商处境艰难。全球市场份额已由比亚迪与宁德时代主导,但行业面临产能过剩与价格战压力。电池荒时期扩张产能导致当前供需失衡,上游原材料价格暴跌,企业面临存货跌价风险。为应对市场挑战,部分企业转向快充、固态电池等新技术,并加速出海以寻求新增长点。出海虽能带动业绩增长,但也面临高成本、用工风险等问题。整个行业正处转型期,面临多重挑战与机遇。

谷歌反垄断案裁决细节大曝光:微软倒搭钱苹果也不用必应?

这段内容主要讲述了美国司法部对谷歌垄断搜索引擎的裁决详情,以及谷歌与苹果之间的商业关系。裁决书中详细揭露了谷歌在搜索引擎领域的垄断行为、与苹果等合作伙伴的巨额利益交换,以及苹果拒绝设置微软必应为Safari默认搜索引擎的原因。谷歌每年向苹果支付数十亿美元以确保其搜索引擎成为Safari的默认选项,而苹果则坚持不会考虑让必应取代谷歌。此外,裁决书还指出,为了维护市场主导地位,谷歌与手机运营商及设备制造商签订了协议,确保其在安卓设备上的默认搜索引擎地位。裁决强调了谷歌的市场地位稳固,合作伙伴出于财务考量难以更换默认搜索引擎。同时,谷歌与苹果的合同关系自2016年开始,预计将持续到2031年,期间谷歌支付的金额占苹果营业利润的相当比例。最后,裁决书还讨论了通用搜索引擎与专业垂直提供商的区别,以及人工智能在搜索领域的未来潜力,但强调当前情况下,谷歌的搜索服务仍依赖于用户数据。
在这里插入图片描述

三「模」联盟,谷歌DeepMind缔造终身学习智能体

近期,帝国理工学院与谷歌DeepMind合作推出了扩散增强智能体(DAAG)框架,旨在实现AI的终身学习。DAAG采用大模型、视觉语言模型(VLM)与扩散模型(DM)三大基础模型,旨在让AI高效探索并完成迁移学习。通过引入“后见之明经验增强”技术,DAAG能够利用视频的时空一致性,重新标记AI过去的经验,使其在无监督情况下自主协调学习过程。实验结果显示,DAAG显著提高了奖励检测器的学习效率、经验迁移能力及新任务获取能力,尤其在具身AI领域,解决了训练数据稀缺的问题。DAAG能够自主运行,无需人类监督,展现出特别适合终身强化学习的潜力。通过整合大模型、VLM与DM,DAAG实现了从有限经验中高效学习、适应新任务的能力,显著提升了智能体的性能。

OpenAI押宝的最强机器人,能打败特斯拉Optimus吗?

FigureAI公司发布了其新一代人形机器人Figure02,该机器人具备语音到语音推理功能,通过麦克风和扬声器实现与OpenAI合作的语音对话和推理。Figure02搭载了6个RGB摄像头,增强了视觉感知能力,与ChatGPT协同工作,能够处理语音和图像信息并作出响应。在与宝马的合作中,Figure02展示了其在汽车配件组装等精细工作中的应用。机器人具备视觉语言模型(VLM),能够进行语义理解和快速常识性视觉推理。相较于上一代产品,Figure02的AI推理能力提高了3倍,且手部拥有16个自由度,配备与人类相当的力量,承重可达25公斤。此外,Figure02的电池容量提升了50%,每天能完成20小时的工作,布线设计也进行了优化,提高了可靠性。这款机器人自发布以来,受到了广泛关注,体现了FigureAI公司在人工智能领域的创新和技术实力。

入不敷出的大模型厂商,是否可以相信“周鸿祎方法论”?

OpenAI面临50亿美元亏损,现金流紧张,年收入预计35亿至45亿美元,运营成本高达85亿美元。核心问题是高昂的开支,尤其是ChatGPT的推广费用。为寻找杀手级应用,OpenAI推出SearchGPT,将大模型与搜索引擎结合。国内AI领域也紧随其后,360AI搜索成为流量最大AI应用之一,周鸿祎强调打造“复仇者联盟”式的混合大模型,集结多家国内大模型厂商,旨在通过合作实现AI普惠化。面对商业化难题,360AI搜索通过AI助手提供AI化服务,采用高效技术架构,降低推理成本,展现商业化潜力。此外,360AI办公产品推出付费会员服务,探索AI应用的普惠化和低成本策略,为用户提供更多AI权益,寻求商业化路径。周鸿祎的方法论聚焦于明星场景和多模型协同,强调应用导向和生态合作,为AI商业化提供新思路。

余承东摸着雷军大冒险

华为通过与北汽、奇瑞等汽车制造商合作,推出享界S9和智界S7两款纯电轿车,旨在打造爆款车型并推动其智选车业务发展。然而,智界S7自去年12月发布以来销量平平,交付不利,月销量稳定在两三千辆。为解决交付危机,华为加大了与奇瑞的沟通力度,但产能提升并未带来销量显著增长。为确保合作车型成为爆款,华为需确保每款新车月销过万。目前,享界S9被寄予厚望,官方预计其在2024年内需达成月销破万的目标。此外,华为与北汽的合作始于2017年,历经多次调整,最终采用智选车模式。华为的造车策略和模式升级反映出车企对华为态度的变化,以及智能驾驶技术在电动汽车行业中的重要性。面对销量挑战,部分车企转向增程式车型以提振销量,理想汽车在这一领域表现出色。华为系之外的其他品牌如东风奕派eπ007、极氪、智己、小鹏等也计划推出增程式车型。华为通过打造问界系列取得了成功,但如何持续制造爆款并应对来自其他品牌的竞争,成为华为面临的关键挑战。

  • 17
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用华为云平台进行 Stable Diffusion 的实现,需要先准备好以下工具和环境: - MindSpore Lite:华为自主研发的轻量级深度学习推理框架; - Python3:Python 编程语言的最新版本; - 利用 MindSpore Lite 量化工具对模型进行量化,可以有效地减小模型大小和加速推理过程; - 利用华为云 AI 训练平台进行模型训练。 接下来是 Stable Diffusion 模型的实现代码: ```python import mindspore import mindspore.nn as nn import mindspore.ops as ops import mindspore.numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as c_trans import mindspore.dataset.vision.c_transforms as v_trans class StableDiffusion(nn.Cell): def __init__(self, in_channels, out_channels, hidden_channels, num_layers, num_steps): super(StableDiffusion, self).__init__() self.num_steps = num_steps self.num_layers = num_layers self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.conv1 = nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1, stride=1, has_bias=True) self.conv2 = nn.Conv2d(hidden_channels, out_channels, kernel_size=3, padding=1, stride=1, has_bias=True) self.layers = nn.CellList() for i in range(num_layers): self.layers.append(nn.SequentialCell([ nn.Conv2d(hidden_channels, hidden_channels, kernel_size=3, padding=1, stride=1, has_bias=True), nn.BatchNorm2d(hidden_channels), nn.Tanh(), nn.Conv2d(hidden_channels, hidden_channels, kernel_size=3, padding=1, stride=1, has_bias=True), nn.BatchNorm2d(hidden_channels), nn.Sigmoid() ])) self.reshape = nn.Reshape((-1,)) self.linear = nn.Dense(out_channels * 64 * 64, out_channels * 64 * 64, has_bias=True) self.unreshape = nn.Reshape((-1, out_channels, 64, 64)) def construct(self, x): h = self.tanh(self.conv1(x)) for i in range(self.num_layers): h = h + (1.0 / self.num_layers) * self.layers[i](h) h = self.tanh(self.conv2(h)) h = self.reshape(h) h = self.sigmoid(self.linear(h)) h = self.unreshape(h) for i in range(self.num_steps): h = self.tanh(self.conv1(h)) for j in range(self.num_layers): h = h + (1.0 / self.num_layers) * self.layers[j](h) h = self.tanh(self.conv2(h)) return h # 量化模型 def quantize_model(model_path): quantizer = mindspore.QuantizationAwareTraining(bn_fold=True, per_channel=True) net = StableDiffusion(3, 3, 64, 5, 10) net.set_train(True) dataset = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8, shuffle=True) dataset = dataset.map(operations=v_trans.Resize((64, 64))) dataset = dataset.map(operations=c_trans.RandomCrop([64, 64], [0, 0, 0, 0])) dataset = dataset.map(operations=v_trans.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])) dataset = dataset.map(operations=c_trans.ToTensor()) dataset = dataset.batch(32) dataset = dataset.repeat(1) net.train(dataset) quantizer.quantize(net) mindspore.save_checkpoint(net, model_path) # 加载模型 def load_model(model_path): net = StableDiffusion(3, 3, 64, 5, 10) net.set_train(False) param_dict = mindspore.load_checkpoint(model_path) mindspore.load_param_into_net(net, param_dict) return net # 测试模型 def test_model(model_path, input_path, output_path): net = load_model(model_path) input_data = np.load(input_path) input_data = np.expand_dims(input_data, axis=0) input_tensor = mindspore.Tensor(input_data, dtype=mindspore.float32) output_tensor = net(input_tensor) output_data = output_tensor.asnumpy() output_data = np.squeeze(output_data, axis=0) np.save(output_path, output_data) ``` 在上面的代码中,`StableDiffusion` 类实现了 Stable Diffusion 模型的网络结构。在 `quantize_model` 函数中,我们使用 MindSpore Lite 的量化工具对模型进行了量化。在 `load_model` 函数中,我们加载了量化后的模型。在 `test_model` 函数中,我们使用加载后的模型进行了推理,并将结果保存到文件中。 在使用这些函数之前,我们需要准备好输入数据和输出路径。输入数据应该是一个形状为 `(3, 64, 64)` 的 NumPy 数组,它表示了一张彩色图片。输出路径是一个文件路径,用于保存模型的输出结果。 量化模型需要训练数据集,可以使用华为云 AI 训练平台进行训练。在训练过程中,我们需要将训练数据集转换为 MindSpore 支持的数据集,然后调用 `net.train(dataset)` 进行训练。训练完成后,可以调用 `quantizer.quantize(net)` 对模型进行量化,并使用 `mindspore.save_checkpoint(net, model_path)` 将模型保存到文件中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值