数据结构与算法-9.相交链表

9、相交链表

题目

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。
题目数据 保证 整个链式结构中不存在环。
注意,函数返回结果后,链表必须 保持其原始结构 。

示例 1:
输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at ‘8’
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。

示例 2:
输入:intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Intersected at ‘2’
解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [0,9,1,2,4],链表 B 为 [3,2,4]。
在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

示例 3:
输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
输出:null
解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。
由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。
这两个链表不相交,因此返回 null 。

  • listA 中节点数目为 m

  • listB 中节点数目为 n

  • 0 <= m, n <= 3 * 104

  • 1 <= Node.val <= 105

  • 0 <= skipA <= m

  • 0 <= skipB <= n

  • 如果 listAlistB 没有交点,intersectVal0

  • 如果 listAlistB 有交点,intersectVal == listA[skipA + 1] == listB[skipB + 1]

  • skipA,skipB指的是A,B链表相交前的节点数量
  • intersectVal指的是A,B链表相交节点的值
struct ListNode {
    int val;
    ListNode *next;
    ListNode(int x) : val(x), next(NULL) {}
};

9.0、暴力解法

先确定A中一点,然后遍历B节点,当A,B节点相同时就返回该结点

然后确定为A中的下一个节点,继续重复遍历B中节点

找不到相同的,就返回null

  • 时间复杂度:O(m n)m为A链表长度,n为B链表的长度
  • 空间复杂度:O(1)

9.1、暴力解法优化(哈希)

利用哈希集合来储存一个链表的所有节点,然后遍历另一个链表来看看集合里存不存在该节点

ListNode* getIntersectionNode1(ListNode* headA, ListNode* headB)
{
    if (!headA || !headB)return NULL;           //有一个头节点为空,直接返回空

    unordered_set<ListNode*> data;
    ListNode* aNode = headA, * bNode = headB;
    while (aNode)                               //将A链表中的节点存入哈希集合中
    {
        data.insert(aNode);
        aNode = aNode->next;
    }
    while (bNode)
    {
        if (data.count(bNode))
            return bNode;
        bNode = bNode->next;
    }
    return NULL;
}
  • 时间复杂度:O(m + n)
  • 空间复杂度:O(n)

9.2、一般解法(我是这么写的)

对于链表:(n表示为不存在)

A:【5,3,7,1,8,2,0,9,4】

B:【n,n,n,4,6,2,0,9,4】

假设A,B在2处相交

指针分别指向5,4

设想一下,我们让A的指针先走3步也就是5–>3–>7–>1

现在指针分别指向1,4

两个指针同时向前移动,是不是正好相交于2这个点

下面的代码为了把功能分开写,所以提取出了函数,其实也可以写在一起。

int countSize(ListNode* head)
{
    int size = 0;
    while (head)
    {
        size++;
        head = head->next;
    }
    return size;
}
ListNode* moveHead(ListNode* head, int num)
{
    for (int i = 0; i < num; i++)
        head = head->next;
    return head;
}
ListNode* getIntersectionNode2(ListNode* headA, ListNode* headB)
{
    if (!headA || !headB)return NULL;           //有一个头节点为空,直接返回空

    int listASize = countSize(headA), listBsize = countSize(headB);//记录两个链表的大小
    if (listASize > listBsize)                  //让两个head在同一起跑线
        headA = moveHead(headA, listASize - listBsize);
    else if(listBsize>listASize)
        headB = moveHead(headB, listBsize - listASize);

    while (headA)                               //开始一一比较
    {
        if (headA == headB)
            return headA;
        headA = headA->next;
        headB = headB->next;
    }
    return NULL;
}
  • 时间复杂度:O(max(m,n))m为A链表长度,n为B链表的长度
  • 空间复杂度:O(1)

9.3、不容易想到的解法(我也是看别人的)

对于链表:(n表示为不存在)

A:【5,3,7,1,8,2,0,9,4】

B:【n,n,n,4,6,2,0,9,4】

假设A,B在2处相交

在上面那种方法中,先让A先走3步,使两个指针可以同步向前

现在,把A,B想象为:(B拼接在A后面,A拼接在B后面)

A:【5,3,7,1,8,2,0,9,4,4,6,2,0,9,4】

B:【n,n,n,4,6,2,0,9,4,5,3,7,1,8,2,0,9,4】

删除n

A:【5,3,7,1,8,2,0,9,4 || 4,6,2,0,9,4】

B:【4,6,2,0,9,4 || 5,3,7,1,8,2,0,9,4】

可以发现,两个指针同步向前,到最后是正好同时遍历到2

ListNode* getIntersectionNode3(ListNode* headA, ListNode* headB)
{
    if (!headA || !headB)return NULL;           //有一个头节点为空,直接返回空

    ListNode* aNode = headA, * bNode = headB;
    while (aNode != bNode)                      //都为空或者相交节点时退出循环
    {
        aNode = aNode == NULL ? headB : aNode->next;
        bNode = bNode == NULL ? headA : bNode->next;
    }
    return aNode;
}
  • 时间复杂度:O(max(m,n))m为A链表长度,n为B链表的长度
  • 空间复杂度:O(1)

性能和上面一样,但是思想值得学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值