OpenCV-形态学操作

本文介绍了OpenCV中的形态学操作,重点讲解了腐蚀和膨胀的概念及应用。腐蚀用于细化图像边界,去除噪声,而膨胀则用于扩大图像边界。OpenCV提供了cv2.erode()和cv2.dilate()函数实现这两种操作。此外,还提到了开运算、闭运算、梯度以及礼帽和黑帽等高级形态学操作。
摘要由CSDN通过智能技术生成


形态学,即数学形态学(Mathematical Morphology),是图像处理过程中一个非常重要的研究方向。形态学主要从图像内提取分量信息,该分量信息通常对于表达和描绘图像的形状具有重要意义,通常是图像理解时所使用的最本质的形状特征。例如,在识别手写数字时,能够能够通过形态学运算得到其骨架信息,在具体识别时,仅针对其骨架进行运算即可,形态学处理在视觉检测、文字识别、医学图像处理、图像压缩编码等领域都有非常重要的应用。
形态学操作主要包含:服饰、膨胀、开运算、闭运算、形态学梯度(Morphological Gradient)运算、顶帽运算(礼帽运算)、黑帽运算等操作。腐蚀操作和膨胀操作是形态学运算的基础,将腐蚀和膨胀操作进行结合,就可以实现开运算、闭运算、形态学梯运算、礼帽运算、黑帽运算、击中击不中等不同形式的运算。

腐蚀

腐蚀是最基本的形态学操作之一,它能够将图像的边界点消除,使图像沿着边界向内收缩,也可以将小于指定结构体元素的部分去除。
腐蚀用来收缩或者细化二值图像中的前景,借此实现去噪声,元素分割等功能
在这里插入图片描述
在open cv中,使用函数cv2.erode()实现腐蚀操作,其语法格式为:

dst = cv2.erode(src, kernel [, anchor[, iterations [ , borderType[ , borderValue]]]])

dst 是腐蚀后所输出的目标图像,该图像和原始图像具有同样的类型和大小。
src是需要进行腐蚀的原始图像,图像的通道数可以是任意的,但是要求图像的深度必须是CV_8U、CV_16U、CV_16S、CV_32F、CV_64F中的一种。
kernel代表腐蚀操作时采用的结构类型。它可以自定义生成,也可以通过函数cv2.getStructuringElement()生成。
anchor代表element结构中锚点的位置。该值默认为(-1,-1),在核的中心位置。
iterations 是腐蚀操作选代的次数,该值默认为1,即只进行一次腐蚀操作。
borderType代表边界样式,一般采用其默认值BORDER_CONSTANT。
在这里插入图片描述

img = cv2.imread('j.bmp')
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel = np.ones((3,3),np.uint8) 
erosion = cv2.erode(img,kernel,iterations = 1)
cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

pie = cv2.imread('j.bmp')
cv2.imshow('J', pie)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel = np.ones((30,30),np.uint8) 
erosion_1 = cv2.erode(pie,kernel,iterations = 1)
erosion_2 = cv2.erode(pie,kernel,iterations = 2)
erosion_3 = cv2.erode(pie,kernel,iterations = 3)
res = np.hstack((erosion_1,erosion_2,erosion_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值