矩阵求导,自动求导

本文介绍了矩阵求导的基本概念,包括向量、标量和矩阵间的导数计算,以及在深度学习库PyTorch中的应用,如自动求导、梯度管理和非标量变量的反向传播。还通过概率论实例展示了如何进行实验估计概率分布的收敛过程。
摘要由CSDN通过智能技术生成

矩阵求导:

常见的矩阵求导公式:
  1. 向量对标量求导(Vector-by-scalar) 如果 y 是一个向量,x 是一个标量,那么 y 对 x 的导数是一个列向量,其中每个元素是 y 中对应元素对 x 的导数。

  2. 标量对向量求导(Scalar-by-vector) 如果 y 是一个标量,x 是一个向量,那么 y 对 x 的导数是一个行向量,其中每个元素是 y 对 x 中对应元素的导数。

  3. 向量对向量求导(Vector-by-vector) 如果 y 是一个向量,x 是一个向量,那么 y 对 x 的导数是一个矩阵,称为雅可比矩阵(Jacobian Matrix),其中每个元素是 y 中对应元素对 x 的导数。

  4. 矩阵对标量求导(Matrix-by-scalar) 如果 Y 是一个矩阵,x 是一个标量,那么 Y 对 x 的导数是一个与 Y 维度相同的矩阵,其中每个元素是 Y 中对应元素对 x 的导数。

  5. 标量对矩阵求导(Scalar-by-matrix) 如果 y 是一个标量,X 是一个矩阵,那么 y 对 X 的导数是一个与 X 维度相同的矩阵,其中每个元素是 y 对 X 中对应元素的导数。

自动求导:

标量求导:

x=torch.arange(4.0,requires_grad=True)#计算𝑦关于𝐱的梯度之前,需要一个地方来存储梯度

y = 2 * torch.dot(x, x)#设置y关于x的函数

y.backward()#调用反向传播函数来自动计算y关于x每个分量的梯度

x.grad

x.grad.zero_()# 在默认情况下,PyTorch会累积梯度,需要清除之前的值

非标量变量的反向传播:

单独计算批量中每个样本的偏导数之和

x.grad.zero_() y = x * x

y.sum().backward() x.grad   # 等价于y.backward(torch.ones(len(x)))

分离计算:

x.grad.zero_()
y = x * x
u = y.detach()#分离y来返回一个新变量u,将y视为一个常数
z = u * x

z.sum().backward()
x.grad == u#结果为True

概率论

进行500组骰子实验,每组抽取10个样本,作图查看概率如何随着时间的推移收敛到真实概率

fair_probs = torch.ones([6]) / 6

counts=multinomial.Multinomial(10,fair_probs).sample((500,))

#多项分布---每组抽取10个,fair_probs为各事件概率,抽样500次
cum_counts=counts.cumsum(dim=0)

#cumsum---累计相加
estimates=cum_counts/cum_counts.sum(dim=1,keepdims=True)

d2l.set_figsize((6,4.5))
for i in range(6):
    d2l.plt.plot(estimates[:,i].numpy(),
                label=("P(die="+str(i+1)+")"))
    d2l.plt.axhline(y=0.167,color='black',linestyle='dashed')
    d2l.plt.gca().set_xlabel('Groups of experiments')
    d2l.plt.gca().set_ylabel('Estimated probability')
    d2l.plt.legend();

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜鸡不叫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值