矩阵计算(求导)

文章介绍了亚导数的概念,特别是在函数不可微分时的应用。接着,讨论了向量在不同情况下的导数形式,包括向量函数对标量的导数是向量,以及两个向量的内积导数。最后,给出了向量函数对向量的导数表现为雅可比矩阵的例子。
摘要由CSDN通过智能技术生成

亚导数

  • 当函数不可微时,不可计算出其普通的导数,此时便需要引入亚导数
  • Example:
    函数 y = ∣ x ∣ y=|x| y=x 不可微,其亚导数为
    ∂ ∣ x ∣ ∂ x = { 1 , x > 0 − 1 , x < 0 a , x = 0 , a ∈ [ 0 , 1 ] \frac{\partial |x|}{\partial x}=\begin{equation} \left\{ \begin{array}{lr} 1, x>0 & \\ -1,x<0 & \\ a, x=0, a\in [0,1] & \end{array} \right. \end{equation} xx= 1,x>01,x<0a,x=0,a[0,1]

将导数拓展到向量

  • y是标量,x是标量,导数也是标量;
  • y是标量,x是向量,导数是向量;
  • y是向量,x是标量,导数是向量;
  • y是向量,x也是向量,导数是一个矩阵。
    请添加图片描述
  • Example1:
    y y y是标量, x ⃗ = [ x 1 , x 2 , . . . , x n ] T \vec{x}=[x_1,x_2,...,x_n]^T x =[x1,x2,...,xn]T为向量时,有 ∂ y ∂ x ⃗ = [ ∂ y ∂ x 1 , ∂ y ∂ x 2 , . . . , ∂ y ∂ x n ] \frac{\partial y}{\partial \vec{x}}=[\frac{\partial y}{\partial x_1},\frac{\partial y}{\partial x_2},...,\frac{\partial y}{\partial x_n}] x y=[x1y,x2y,...,xny]
    请添加图片描述
    Explain:
    • < u , v > <u,v> <u,v>表示向量的内积, < u , v > ′ = u T ∂ v ∂ x + v T ∂ u ∂ x <u,v>'=u^T\frac{\partial v}{\partial x}+v^T\frac{\partial u}{\partial x} <u,v>=uTxv+vTxu公式简略推导如下:请添加图片描述
  • Example2:
    y ⃗ = [ y 1 , y 2 , . . . , y n ] T \vec{y}=[y_1,y_2,...,y_n]^T y =[y1,y2,...,yn]T是向量, x x x是标量时,有 ∂ y ⃗ ∂ x = [ ∂ y 1 ∂ x , ∂ y 2 ∂ x , . . . , ∂ y n ∂ x ] T \frac{\partial \vec{y}}{\partial x}=[\frac{\partial y_1}{\partial x},\frac{\partial y_2}{\partial x},...,\frac{\partial y_n}{\partial x}]^T xy =[xy1,xy2,...,xyn]T
  • Example3:
    y ⃗ = [ y 1 , y 2 , . . . , y n ] T \vec{y}=[y_1,y_2,...,y_n]^T y =[y1,y2,...,yn]T是向量, x ⃗ = [ x 1 , x 2 , . . . , x n ] T \vec{x}=[x_1,x_2,...,x_n]^T x =[x1,x2,...,xn]T也是向量时有请添加图片描述
    请添加图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值