前言:本篇文章的服务对象是没有武力值也想和pytorch沾沾边的小白朋友们,主要的内容是对于经典代码的逐行解读,解读内容以注释的形式展示。
本篇文章的代码来源为(李沐 动手学深度学习pytorch版)
本篇文章的思路与专栏内的线性回归一文较为类似,主要差别在于解释softmax回归的运行逻辑。
import matplotlib.pyplot as plt
import torch
from IPython import display
from d2l import torch as d2l
batch_size = 256 # 每次随机读取256张图片
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) # 返回测试和训练的迭代器
图像提取章节提到了,我们下载的数据集是长宽都为28的图片,通道为1可以理解为一个3D的输入。但是对于softmax回归而言,输入要求为向量,所以我们将其拉伸为一个向量。对于输入而言28*28=784,输入是长为7841的一个向量,因此输入维度为784。对于输出而言 应为数据集有10个类别,所以输出的维度为10。
num_inputs = 784 # 28*28=784,输入是长为7841的一个向量,因此输入维度为784
num_outputs = 10 # 应为数据集有10个类别,所以输出的维度为10
w是权重,初始为一个高斯随机,均值为0,方差为0.01,形状主要特别注意,行数是输入维度,列数是输出的维度,且需要计算梯度。
b是偏移,是和输出一样长的向量,要计算梯度
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
接下来定义softmax操作
知识tips:对于矩阵我们可以按照某个轴来求和,0是行,1是列。
keepdim=True是保持计算后的维度不变,可以通过计算结果内有几个[]判断维度是否改变
X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
print(X.sum(0, keepdim=True), X.sum(1, keepdim=True))
需要注意此时的X是一个矩阵,对于矩阵而言是按照每一行对其做 softmax,softmax的步骤可以参考专栏中的文章。
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition # 这里应用了广播机制
X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
print(X_prob, X_prob.sum(1))
实现softmax模型
这里的的x就是28*28的图片,reshape,-1是表示让电脑自行判断(应该是等于批量大小),W.shape[0]是784
再对X和W进行矩阵乘法,并通过广播机制加上偏移
最后放到softmax里面,得到一个所有元素值大于零且行和为1的输出
def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
# 实现交叉熵损失函数
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
print(y_hat[[0, 1], y])
# len(y_hat)=2,range(2)的意思是2是停止位置,则在下文中的range(2)其实是引索样本0和样本1
def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])
print(cross_entropy(y_hat, y))
下面开始计算正确的数量
# 这里的理解有点点麻烦,当y_hat行列都大于1时,每一行都是一组预测概率
# 每一行的预测概率中,第几位是最大值就是觉得最有可能是第几位对应的标签,
# 将最大值对应的标签储存起来
# 用(==)运算符号来判断这个保存起来的标签和真实的标签一不一样
# 一样就是TRUE,不一样就是FALSE,并将结果保存起来=cmp
# 再将cmp的格式变得和y一样,Python中TRUE就是1,FALSE就是0,对于其求和就知道了,在这次预测中有预算正确的个数
# 在将预测正确的个数和len(y)总共有几个做除法,就可以得到本次的正确率
def accuracy(y_hat, y): #@save
"""计算预测正确的数量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
print(accuracy(y_hat, y) / len(y))
定义了精度函数和累加器,方便在之后的过程中直接调用,和softmax归回本身关系不大,不甘心去的同学可以直接跳过该代码块往下看。
# 定义了一评估精度的函数
def evaluate_accuracy(net, data_iter): #@save
"""计算在指定数据集上模型的精度"""
if isinstance(net, torch.nn.Module):
net.eval() # 将模型设置为评估模式,.eval的用法见下文回归训练的部分
metric = Accumulator(2) # 累加器储存的数据为正确预测数、预测总数
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
# 定义一个累加器
class Accumulator: #@save
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
开始进行第一轮训练(为了方便阅读和训练流程的连贯性,注释直接添加在代码块中)
# 开始softmax回归的训练
def train_epoch_ch3(net, train_iter, loss, updater): #@save
"""训练模型一个迭代周期(定义见第3章)"""
# 将模型设置为训练模式
# isinstance() 函数,是Python中的一个内置函数,用来判断一个函数是否是一个已知的类型
# 知识点:pytorch可以给我们提供两种方式来切换训练和评估(推断)的模式,分别是:model.train() 和 model.eval()。
# 一般用法是:在训练开始之前写上 model.train() ,在测试时写上 model.eval() 。有特殊作用。
if isinstance(net, torch.nn.Module):
net.train()
# 累加器要累加的变量:训练损失总和、训练准确度总和、样本数
metric = Accumulator(3)
for X, y in train_iter:
# 计算梯度并更新参数
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch内置的优化器和损失函数
# 下面的过程和之前一样,现将梯度设定为0,然后计算梯度,然后更新参数
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定制的优化器和损失函数,即是自己实现的,不是内置的
l.sum().backward() # 此时的l是一个向量,求和并且算梯度
updater(X.shape[0]) # 根据批量大小更新一下
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel()) # 记录分类的个数到累加器里
# 返回训练损失和训练精度
# metric[0]是所有的损失累加l.sum(),metric[1]是所有分类正确的样本数,metric[2]是所有的样本数量y.numel()
return metric[0] / metric[2], metric[1] / metric[2]
定义了一个方便绘图的工具,可以动态绘图,注意:沐神的代码实在jupyter中运行的,而jupyter是每次会自动调用图像显示函数的,在其他编译器中要连续显示函数的话需要在ADD函数中加入plt相关语句,如下代码块中的注释所示。
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
plt.draw() # 特殊情况看看这里
plt.pause(0.001) #还有这里
display.display(self.fig)
display.clear_output(wait=True)
在准备工作都完成后,就可以开始进行多轮训练了,,下文中定义了训练模型,该训练过程也和线性回归过程类似。后续过程中若要开始训练,只需要给定训练轮次,并且直接调用函数即可完成训练。
# 开始进行多轮次的训练
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
"""训练模型(定义见第3章)"""
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc']) # 上文中定义的可视化绘画程序
for epoch in range(num_epochs): # 这里体现了训练几轮
train_metrics = train_epoch_ch3(net, train_iter, loss, updater) # 这里输出的是两个误差
test_acc = evaluate_accuracy(net, test_iter) # 这里是在测试数据集test_iter上评估精度
animator.add(epoch + 1, train_metrics + (test_acc,)) # 在绘图里面显示训练的误差和精度,测试的误差和精度
train_loss, train_acc = train_metrics
# assert断言函数是对表达式布尔值的判断,要求表达式计算值必须为真。可用于自动调试。如果表达式为假,触发异常;如果表达式为真,不执行任何操作。
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
小批量随机梯度下降,在本专栏的线性回归一文中已经给过定义了,下面直接调用小批量随机梯度下降来对函数进行优化。
lr = 0.1 # 学习率
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
训练10轮试试水,应为在训练模型中调用了之前定义的绘画,所以在运行后可以看到每一轮的运行效果哦。
num_epochs = 10 # 给定训练的迭代周期
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
在对模型完训练完成之后,就可以用训练好的模型进行预测拉,下文中在测试集中随机挑选了6张图片进行预测,并对比预测标签和训练标签来判断是否预测正确。
def predict_ch3(net, test_iter, n=6): #@save
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y) # 取出真实的标号
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1)) # 取出预测标号
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(
X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)
以上便是本次softmax回归的全部流程,手写softmax回归流程也是为了能够更加深刻的理解该函数,在之后的简洁版中会直接采用深度学习框架的高级API来实现softmax回归。