插值算法(最邻近差值、双线性插值、双三次插值)

一、最邻近差值(nearest)

含义: 选取离目标点最近的点的值作为新的插入点的值。请添加图片描述
两幅图坐标值变换关系:
(代码未验证)

for i=1:size(dist,1)
	x = round(i* (size(src,1)/size(dist,1)));  %dst横坐标变换到src坐标系,最临近点
	for j=1:size(dist,2)
		y = round(j* (size(src,2)/size(dist,2)));  %dst纵坐标变换到src坐标系,最临近点
		dist(i,j)=src(x,y); % 最临近点赋值
	end
end

在这里插入图片描述

二、线性插值 (linear)

含义: 根据两点建立线性关系,以距离作为权重进行插值。
请添加图片描述

三、双线性插值(bilinear)

含义: 分别从两个方向上各进行一次线性插值。
请添加图片描述
对于p点的灰度值,可以通过p点周围Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点来获得。

在横坐标方向上进行两次线性插值:

根据Q11、Q21: f ( R 1 ) ≈ x 2 − x x 2 − x 1 f ( Q 11 ) + x − x 1 x 2 − x 1 f ( Q 21 )  where  R 1 = ( x , y 1 ) f\left(R_{1}\right) \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{11}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{21}\right) \quad \text { where } R_{1}=\left(x, y_{1}\right) f(R1)x2x1x2xf(Q11)+x2x1xx1f(Q21) where R1=(x,y1)
根据Q21、Q22: f ( R 2 ) ≈ x 2 − x x 2 − x 1 f ( Q 12 ) + x − x 1 x 2 − x 1 f ( Q 22 )  where  R 2 = ( x , y 2 ) f\left(R_{2}\right) \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{12}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{22}\right) \quad \text { where } R_{2}=\left(x, y_{2}\right) f(R2)x2x1x2xf(Q12)+x2x1xx1f(Q22) where R2=(x,y2)

在纵坐标方向上进行一次线性插值:

根据R1和R2: f ( P ) ≈ y 2 − y y 2 − y 1 f ( R 1 ) + y − y 1 y 2 − y 1 f ( R 2 ) f(P) \approx \frac{y_{2}-y}{y_{2}-y_{1}} f\left(R_{1}\right)+\frac{y-y_{1}}{y_{2}-y_{1}} f\left(R_{2}\right) f(P)y2y1y2yf(R1)+y2y1yy1f(R2)

整理得:
f ( P ) ≈ ( y 2 − y ) ( x 2 − x ) ( y 2 − y 1 ) ( x 2 − x 1 ) f ( Q 11 ) + ( y 2 − y ) ( x − x 1 ) ( y 2 − y 1 ) ( x 2 − x 1 ) f ( Q 21 ) + ( y − y 1 ) ( x 2 − x ) ( y 2 − y 1 ) ( x 2 − x 1 ) f ( Q 12 ) + ( y − y 1 ) ( x − x 1 ) ( y 2 − y 1 ) ( x 2 − x 1 ) f ( Q 22 ) \begin{aligned} f(P) & \approx \frac{\left(y_{2}-y\right)\left(x_{2}-x\right)}{\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)} f\left(Q_{11}\right)+\frac{\left(y_{2}-y\right)\left(x-x_{1}\right)}{\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)} f\left(Q_{21}\right) \\ &+\frac{\left(y-y_{1}\right)\left(x_{2}-x\right)}{\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)} f\left(Q_{12}\right)+\frac{\left(y-y_{1}\right)\left(x-x_{1}\right)}{\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)} f\left(Q_{22}\right) \end{aligned} f(P)(y2y1)(x2x1)(y2y)(x2x)f(Q11)+(y2y1)(x2x1)(y2y)(xx1)f(Q21)+(y2y1)(x2x1)(yy1)(x2x)f(Q12)+(y2y1)(x2x1)(yy1)(xx1)f(Q22)

由于图像双线性插值只使用相邻4个点,因此上式分母都为1。整理公式得到:

f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)

图示:
在这里插入图片描述
代码示例(未验证):

for i=1:size(dist,1)
	x = double(i* (size(src,1)/size(dist,1)));  
	u = x-floor(x); %向下取整,求差值
	for j=1:size(dist,2)
		y = double(j* (size(src,2)/size(dist,2)));  
		v = y-floor(y); %向下取整,求差值
		dist(i,j)=(1-u)*(1-v)*src(i,j) + (1-u)*v*src(i,j+1) + u*(1-v)*src(i+1,j) + u*v*src(i+1,j+1);
	end
end

四、双三次插值(cubic)

含义: 对于某点进行插值时,考虑该点周围16个像素的影响。首先构造一个cubic函数,根据该点不同位置的cubic函数值作为权值,对该点进行插值赋值。
在这里插入图片描述
对待插值的像素点 ( x , y ) (x,y) (x,y)(x和y可以为浮点数),取其附近的4x4邻域点 ( x i , y j ) , i , j = 0 , 1 , 2 , 3 (x_i,y_j), i,j = 0,1,2,3 (xi,yj),i,j=0,1,2,3。按如下公式进行插值计算:
f ( x , y ) = ∑ i = 0 3 ∑ j = 0 3 f ( x i , y j ) W ( x − x i ) W ( y − y j ) f(x, y)=\sum_{i=0}^{3} \sum_{j=0}^{3} f\left(x_{i}, y_{j}\right) W\left(x-x_{i}\right) W\left(y-y_{j}\right) f(x,y)=i=03j=03f(xi,yj)W(xxi)W(yyj)

代码示例(未验证):

% 构造cubic函数,取a=-1
function A=sw(w1)
w=abs(w1);
if w<1&&w>=0
   A=1-2*w^2+w^3;
elseif w>=1&&w<2
   A=4-8*w+5*w^2-w^3;
else
  A=0;
end
for i=1:size(dist,1)
	x = double(i* (size(src,1)/size(dist,1)));  
	u = x-floor(x); %向下取整,求差值
   	A=[sw(1+u) sw(u) sw(1-u) sw(2-u)];  
	for j=1:size(dist,2)
		y = double(j* (size(src,2)/size(dist,2)));  
		v = y-floor(y); %向下取整,求差值
		C=[sw(1+v);sw(v);sw(1-v);sw(2-v)];
     	B=[src(i-1,j-1) 	src(i-1,j)	 src(i-1,j+1)	src(i-1,j+2)
       	src(i,j-1)   	src(i,j) 		 src(i,j+1)   src(i,j+2)
      	src(i+1,j-1)   src(i+1,j) 	src(i+1,j+1) 	src(i+1,j+2)
       	src(i+2,j-1) 	src(i+2,j) 	src(i+2,j+1)	src(i+2,j+2)];
     	dis(i,j)=(A*B*C);
	end
end

备注:所有代码是为了方便加深理解算法过程写的matlab伪代码片段,未在编译器上运行测试

参考文章:
【图像插值算法总结】https://www.cnblogs.com/laozhanghahaha/p/12580822.html
【图像缩放之双三次插值法】https://blog.csdn.net/qq_29058565/article/details/52769497
【双三次插值算法详解 含python实现】https://www.cnblogs.com/wojianxin/p/12516762.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值