【每周CV论文推荐】初学模型可视化分析有哪些值得阅读的论文?

欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。

模型的可视化分析是模型可解释领域里非常重要的方向,通过可视化可以直接得分析模型的性能,让初学者更好地理解模型,本次我们来介绍初入该领域值得阅读的文章。

作者&编辑 | 言有三

1 基于梯度法的输入可视化

Dumitru Erhan和Yoshua Bengio等人在2009年提出从DBN网络的输出,进行从顶到底的计算来得到输入的样本,用于可视化激活模式,后来在2013年Karen Simonyan等人则首次将其应用到深层图像分类网络的可视化中,这是一类输入可视化方法,用于分析模型对什么样的输入感兴趣,后续还有一系列的改进方法。

文章引用量:5000+

推荐指数:✦✦✦✦✦

bbe5993fb8cf26246d1a9d1f7d42f339.png

[1] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps[J]. arXiv preprint arXiv:1312.6034, 2013.

2 基于反卷积的特征可视化

反卷积可视化方法是一个非常经典又独特的方法,它与梯度计算法不同,其核心思想是利用上采样从特征空间逐步恢复到图像空间,必须要使用真实的输入数据进行前向和反向传播。而可视化的结果则类似,也是一些特定的激活输入模式。

文章引用量:16000+

推荐指数:✦✦✦✦✦

a372d1fc954cdb3f3e5e7fc51f85478d.png

[2] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European conference on computer vision. Springer, Cham, 2014: 818-833.

3 反向传播梯度可视化

当前的神经网络基本上都是基于反向传播来进行优化,通过计算各个输入单元的梯度,其实也可以将其作为输入单元的重要性。在进行可视化的时候,通常使用图像*梯度。这一类方法称之为基于反向传播的梯度可视化方法,或者简称为梯度计算法,包含了一系列改进。

文章引用量:3000+

推荐指数:✦✦✦✦✦

fa37292a906084b9232e878c96bde8cd.png

[3] Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks[C]//International conference on machine learning. PMLR, 2017: 3319-3328.

4 热图可视化方法 

输入图片中包含了很多的像素,但前景和背景对神经网络的重要性显然是不一样的,即使前景的各个像素也是不一样。通过对输入中各个元素的重要性进行量化和分析,能够帮助大家理解是什么样的内容影响了模型的输出,其中最成熟的方法就是激活热图可视化方法,主要是原生的CAM和Grad-CAM。

文章引用量:16000+

推荐指数:✦✦✦✦✦

436bc8fe6e3c6fe5d8cf184d4636d1c0.png

[4] Zhou B ,  Khosla A ,  Lapedriza A , et al. Learning Deep Features for Discriminative Localization[C]// CVPR. IEEE Computer Society, 2016.

[5] Selvaraju R R ,  Cogswell M ,  Das A , et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.

5 模型可视化的一些工具

当前有一些研究者开发了一些模型可视化的基础工具,可以对网络的输入信号,输出结果,中间的特征图进行直观的查看,类似的工具非常多,比较典型的如3D可视化工具Zetane Engine,CNN EXPLAINER等,大家可以去搜索相关工具进行尝试。

676d7b3f36b7ed3db2b7d509a4ae8a2b.png

f942aa33465e71c1def5425389f6147a.png

[6] Wang Z J, Turko R, Shaikh O, et al. CNN explainer: learning convolutional neural networks with interactive visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 27(2): 1396-1406.

[7] https://github.com/poloclub/cnn-explainer

6 如何进行实战

为了帮助大家掌握一些模型可视化分析的重要方法,我们推出了相关的专栏课程《深度学习之模型分析:理论实践篇》,可以进一步阅读:

【模型分析】不满足于盲目地调参,那关于看懂模型,你掌握了多少技能呢?

9d222f62ce35ce78adc5980e9e79b99d.png

0421d231ecdf147f22724c9315646d6b.jpeg

总结

本次我们简单介绍了模型可视化分析的一些重要内容,这是模型可解释性研究领域里非常重要的内容,对于理解复杂的深度学习模型是必备的知识,值得所有从业者掌握。

有三AI秋季划-模型算法组

aca4c6ee1431e2cfa951d7e3fb6f4a79.png

如果想要永久系统性地跟随我们社区学习深度学习模型设计,分析,优化,部署的相关内容,请关注有三AI-CV秋季划模型算法组,阅读了解下文:

3245e130f0a0d06573983178dc2e5be9.png

【CV秋季划】模型算法与落地很重要,如何循序渐进地学习好(2022年言有三一对一辅导)?

转载文章请后台联系

侵权必究

563128cdba55f8d91dbc5d55e08dd692.gif

e2a60f8f521dee07fa0fd5bc007aeb08.png

fe50d23a840adcee97cb7c65fe368097.png

往期相关精选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

言有三

三人行必有AI

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值