hdu 1098 Ignatius's puzzle

本文介绍了一道关于求解特定多项式中未知数a的最小值的问题,通过数学归纳法和二项式展开来证明解决方案的正确性,并提供了一段C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

http://acm.hdu.edu.cn/showproblem.php?pid=1098

题目描述:

Ignatius's puzzle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5645    Accepted Submission(s): 3871


Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".

 

Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
 

Output
The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
 

Sample Input
  
  
11 100 9999
 

Sample Output
  
  
22 no 43

题意:

给定f(x)=5*x^13+13*x^5+k*a*x,现给出k值 ,求能使x取任意值都能使f(x)%65==0的最小a值。

题解:

数论,数学归纳法,使f(0)能整除65 然后 假设 f(x)能整除65 证明f(x+1)也能整除65,这样就能满足题意任意x的条件了。

f(0)=0 能整除65, f(1)=18+ka 能整除65(假设的),假设f(x)能整除65,那么f(x+1)=f(x)+5*[C(13,1)x^12+……+C(13,13)x^0]+13*[C(5,1)x^4……+C(5,5)x^0]+ka=f(x)+5*[C(13,1)x^12+……+C(13,12)x^1]+13*[C(5,1)x^4……+C(5,4)x^1]+18+ka。(二项式展开,泰勒展开)

可以发现除了18+ka外 其他都能整除65;所以要使f(x+1)要能整除65,那么需要18+ka要能整除65(注意:这不是个充要条件 ,而是一个必要不充分条件)

现在整个问题转换为  使 18+ka 能整除65的最小 a值;假设k=1,而要使a值最小 那么a最大能取到65

所以直接枚举每个样例a到65即可。

代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<algorithm>
using namespace std;
int k=0,a=0;
/*for test*/
int test()
{
	return(0);
}
/*main process*/
int MainProc()
{
	while(scanf("%d",&k)!=EOF)
	{
		for(a=0;a<=65;a++)
		{
			if((18+k*a)%65==0)
			{
				printf("%d\n",a);
				break;
			}
		}
		if(a>65)
		{
			printf("no\n");
		}
	}
	return(0);
}
int main()
{
	MainProc();
	return(0);
}




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值