【数据分析】数据清洗及特征管理

本文探讨了数据清洗的重要性,包括处理缺失值和重复值的方法。对于缺失值,介绍了查看和处理的步骤,如Age列的填充策略。还讨论了数据的重复值处理。接着,文章转向特征管理,特别是数值型和文本型特征的处理,如年龄的分箱操作和从Name特征中提取Titles。
摘要由CSDN通过智能技术生成

数据清洗及特征管理

#加载所需的库
import numpy as np
import pandas as pd

#加载数据train.csv
df = pd.read_csv('train.csv')
df.head(3)

**数据清洗简述 **
我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,本章我们将学习缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的样子。
缺失值观察与处理
我们拿到的数据经常会有很多缺失值,比如我们可以看到Cabin列存在NaN,那其他列还有没有缺失值,这些缺失值要怎么处理呢
(1) 请查看每个特征缺失值个数
(2) 请查看Age, Cabin, Embarked列的数据

#方法一
df.info()
#方法二
df.isnull().sum()
df[['Age','Cabin','Embarked']].head(3)

对缺失值进行处理
(1)处理缺失值一般有几种思路
(2) 请尝试对Age列的数据的缺失值进行处理(3) 请尝试使用不同的方法直接对整张表的缺失值进行处理

df[df['Age']==None]=0
df.head(3)

df[df['Age'].isnull()] = 0 # 还好
df.head(3)

df[df['Age'] == np.nan] = 0
df.head()


【思考】检索空缺值用np.nan要比用None好,这是为什么?

【回答】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值