本科四年个人感想

北航德育答辩总结:

     其实挺无聊的一件事儿的,百度本科生德育答辩,出来的只有北航。在德育答辩会上问的问题也都是“你最难忘的事儿”,“最大的变化”,“最大的收获”之类的事情。如果我是导员的话,我肯定不会问这些东西,我会问“你大学四年最遗憾的是什么”。既然要求要2000字,那除开前面的自吹自擂,还是写点个人感想凑字数吧。

     大学四年这是过得快,也不知道是因为大学的时间比高中富裕了太多,结果让自己浪费而不自知,还是因为大学的生活比高中更要迷茫而让自己产生的错觉,我总感觉大学四年过得比高中三年还要快,突然间一下子就从大一变成了大四。

     还记得才到学校的时候,因为高考的失利,还有点失落,但是于此同时也踌躇满志,希望自己能收获一个圆满的大学四年。遥想高中班主任的那句谎话“到了大学你们就轻松了”,我真是哭笑不得。

     如果说从个人选择来讲,大学生活真的比高中生活轻松很多了吧,因为到了大学每个人真的就是自由的了,可以选择自己的生活方式。你可以继续一本正经的做一个学霸,好好学习天天向上,每天如高中生一般宿舍教室图书馆三点一线;你也可以在各个社团组织里面大展身手,穿梭于各种关系之中成为一朵交际之花;当然你也可以选择宅在寝室,不去上课在游戏与睡梦之中超神超鬼超越人生。这些选择,只要你想做,没人可以真的管得住你。可能正是因为大学选择变得太多了,所以我反而觉得我在大学中的生活变得异常的忙碌,而且忙碌的同时却并不感到充实。

     有位前辈说得好,大学里面,娱乐(包含恋爱、社交、游戏、旅游等活动)、学习、睡眠你最多只能选择其中两个,这句话真是说得太对不过。记得大一刚来的时候,一下子参加了系里面两个事儿最多的部,同时还担任小班长,还在夜校里面供职,参加了五个社团,每个社团有活动都尽量去参与,学习上也不敢放松,带着从高中来的惯性,于是睡眠上牺牲了很多。后来,受到周围人影响,逐渐放松了学习,导致大一结束成绩真是一落千丈。后来大二开始彻悟,放弃了娱乐,大三继续放弃了娱乐,为了保研尽心尽力。终于到了大四想好好娱乐的时候,却发现保研过后想娱乐,导师已经不允许你娱乐了,何况也没有心情再去娱乐了。

     我的大学,总的来说,不算太差,当过几个不大的学生干部,得过几个不大的奖学金,参与过几个不大的社团,不过只是没有谈过恋爱罢了。可是可能正是因为这种想面面俱到的想法,致使我在娱乐、学习、睡眠三个方面其实都做得很均衡,没有一点突出的地方,总感觉缺少点什么东西。看看人家的大学,要不收获了一段美好的校园爱情,要不然收获了创业(包括创建社团并辛苦付出)的激情,要不然收获了丰富的学识,有着各种各样的滋味,而我的大学四年,感觉过得像是一杯凉白开一样。你不能说凉白开很差,因为他虽然没什么味道,但是他又确实是解渴的好东西,但是你要说羡慕不羡慕别的一些人的经历,那我可能会说,是有点羡慕,同时也为自己感到遗憾的。大学的本科这四年,感觉就是非常迷茫的四年,因为迷茫,所以不知道该干什么,因为不知道该干什么,所以干脆什么都在干,因为什么都在干,结果什么都没有干得很好,各种滋味相互融合,均衡化过后就变成了一杯白开水了。虽然我不喜欢给人提什么人生经验,不过如果有后来的小盆友们看到了这些文字,而他们又不想跟他们的大学生活像杯白开水的话,那我的建议就是在上大一之前赶快就把自己的想要的生活确定下来,遇到喜欢的人就别想那么多去追,遇到喜欢的竞赛或者项目就赶快报名去学,遇到喜欢的游戏就赶快打开电脑去练,只要你想好你想要的生活并且愿意为他付出代价,那你肯定会过得比我有滋味一些。当然,你的大学四年过后,可能也会觉得比我更加浑浑噩噩而且迷茫一些,当然也可能更加后悔一些,毕竟,每个人都会去羡慕其他人的生活。

     其实大部分人的这四年都跟我一样,甚至有些还不如我,如果人知足的话,可能就不会觉得这有什么问题了吧,不过就我个人而言,从小就会因为不完美而感到遗憾。

     回想起大一懵懵懂懂才来北京市的时候,当时还不知道自己是在往沙河郊区里面的学校去,坐在远方亲戚的车子里面,旅途的困倦夹杂着兴奋,昏昏欲睡却不想睡,在拥挤的北京交通里面一停一顿的缓慢挪动着,可是却像是一瞬间,就突然开到了校园门口。而大学四年,也是这么晃晃悠悠慢慢度过,仿佛也是一瞬间,就突然要毕业了。

     直到现在,我仍未知道那天来学校时走的那条路的名字,也不知道他通向何方。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值