第二十四篇-Ollama-在线安装

博客围绕Ollama展开,介绍了其在线、离线安装方式,还提及下载运行模型、open-api请求等内容。同时给出监听本地IP与端口、加载本地模型文件等操作,并且展示了在TeslaP40上不同模型版本的运行速度。

ollama-在线安装,运行速度相当不错

环境

系统:CentOS-7
CPU: 14C28T
显卡:Tesla P40 24G
驱动: 515
CUDA: 11.7
cuDNN: 8.9.2.26

安装

curl -fsSL https://ollama.com/install.sh | sh
等待下载

下载运行模型

ollama run qwen:0.5b-chat-v1.5-q4_1
国内也可以下载的

看到如下内容
success 
>>>
可以输入对话内容了
比如
	介绍自己

open-api请求

curl http://localhost:11434/api/chat -d '{
	"model": "qwen:0.5b-chat-v1.5-q4_1",
	"messages": [
		{ "role": "user", "content": "介绍一下北京景点?" }
	]
}'
curl http://localhost:11434/api/generate -d '{
	"model": "qwen:0.5b-chat-v1.5-q4_1",
	"prompt":"介绍一下北京景点?"
}'

性能

1C2G服务器上运行qwen0.5b-v1.5速度超快,1.8B就不行了很慢,如何升级更高
4c8G服务器上运行

模型版本信息获取

https://ollama.com/library
可以在这里找打所有模型,并查看指定版本命令

第二十四篇-Ollama-在线安装
第二十五篇-Ollama-离线安装
第二十六篇-Ollama-监听本地IP与端口
第二十七篇-Ollama-加载本地模型文件
第二十八篇-Ollama-TeslaP40-Ollama-8B-Qwen1.5-32B等速度
第三十篇-Ollama-TeslaP40-Ollama-Qwen2-57B等速度

### 安装 Vim-Ollama Deepseek 对于安装 `vim-ollama` 和配置其与 `Deepseek` 的集成,当前提供的参考资料并未直接提及具体的安装步骤。然而,可以推测这涉及两个主要部分:一是确保 Ollama 工具链已正确设置;二是确认能够通过特定参数调用 `Deepseek` 模型。 考虑到这一点,在尝试安装或配置任何软件之前,建议先验证环境是否满足最低需求,并了解目标平台的具体要求。对于 `vim-ollama` 这样的工具来说,通常会依赖于 Python 环境以及一些额外的库支持[^2]。 由于具体到 `vim-ollama deepseek` 的安装指南缺失,这里提供一种可能的方式来进行类似的配置: #### 配置Ollama运行环境 为了使 `vim-ollama` 能够顺利工作并访问 `Deepseek` 模型,首先需要按照官方说明来准备基础环境。如果计划使用 Docker 来简化部署过程,则可以通过拉取相应的镜像文件作为起点: ```bash docker pull infiniflow/ragflow:dev ``` 接着启动服务端口监听以便后续操作: ```bash docker compose up ragflow -d ``` 以上命令有助于创建一个适合开发测试的服务框架[^1]。 #### 使用Ollama管理模型实例 为了让应用程序能有效地利用 `Deepseek` 模型特性,可通过如下指令加载指定版本的模型,并开启详细的日志记录功能以监控性能表现: ```bash ollama run DeepSeek-R1-UD-IQ1_M --verbose ``` 此命令不仅启用了所选模型,还加入了 `-verbose` 参数用于跟踪处理效率(每秒处理多少 token),这对于优化用户体验至关重要。 需要注意的是,上述指导基于现有资料推断而来,并不代表针对 `vim-ollama deepseek` 的确切安装流程。实际应用时应参照最新文档获取最权威的操作指引。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值