今天是12天,学习了ResNet50图像分类。
ResNet50是一种基于深度卷积神经网络(Convolutional Neural Network,CNN)的图像分类算法。ResNet50相比于传统的CNN模型具有更深的网络结构,通过引入残差连接(residual connection)解决了深层网络训练过程中的梯度消失问题,有效提升了模型的性能。
它的主要优势在于通过引入残差连接(Residual Connection)解决了在深度神经网络中随着层数增加而出现的梯度消失和精度下降问题。
在图像分类中,ResNet50 能够自动学习到图像中的各种特征,无论是低级的边缘、纹理等特征,还是高级的物体形状、场景等特征。
例如,在识别动物图像时,ResNet50 可以从输入的图像中提取出动物的外形、颜色、姿态等特征,从而准确判断出动物的类别。