Pytorch中计算自己模型的FLOPs | thop.profile() 方法 | yolov5s 网络模型参数量、计算量统计

转自:Pytorch中计算自己模型的FLOPs | thop.profile() 方法 | yolov5s 网络模型参数量、计算量统计_墨理学AI-CSDN博客



Pytorch: 用thop计算pytorch模型的FLOPs - 简书

安装thop

pip install thop

基础用法

  • 以查看resnet50的FLOPs为例

from torchvision.models import resnet50
from thop import profile
model = resnet50()
input = torch.randn(1, 3, 224, 224)
flops, params = profile(model, inputs=(input, ))
  • 查看自己模型的FLOPs

class YourModule(nn.Module):
    # your definition
def count_your_model(model, x, y):
    # your rule here

input = torch.randn(1, 3, 224, 224)
flops, params = profile(model, inputs=(input, ), 
                        custom_ops={YourModule: count_your_model})
  • 提升输出结果的可读性
    调用thop.clever_format

from thop import clever_format
flops, params = clever_format([flops, params], "%.3f")

参考:https://github.com/Lyken17/pytorch-OpCounter



作者:wzNote
链接:https://www.jianshu.com/p/6514b8fb1ada
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值