slam
文章平均质量分 68
AutoSlam
这个作者很懒,什么都没留下…
展开
-
SLAM学习资料整理(转载)
SLAM学习资料整理(转载) 原文出处:http://www.cnblogs.com/wenhust/p/5942893.html 书籍: 1.必读经典 Thrun S, Burgard W, Fox D. 《Probabilistic robotics》[M]. Cambridge, USA: MIT Press, 2005 《Principles of Robot M转载 2016-10-22 13:15:48 · 3889 阅读 · 1 评论 -
占据栅格地图(occupancy grid maps) -- 二值贝叶斯滤波应用
其实,我想讲的关键点是二值状态的最优估计问题,而不仅仅是栅格地图。 Anyway,that is a good example. 机器人的地图表示方式有多种,如拓扑地图、特征地图、直接表征法、栅格地图等。其中,栅格地图应用广泛,方便用于机器人的导航规划中(我也比较喜欢)。以下地图就是栅格图表示(每一个像素可以认为是一个格子),图一是概率机器人书本中的例子,图二是国内某品牌扫地机...原创 2018-03-22 00:09:40 · 15406 阅读 · 6 评论 -
《概率机器人》第一章:绪论
心血来潮,咱们聊一聊这本书吧。 希望我能把整本书都讲一遍,立个flag(通常很容易打脸的);同时也希望各位看官能支持一下,多多评论和分享,这是我写下去的动力,哈哈。 这是机器人,尤其是移动机器人的圣经书籍之一。对于从事相关领域的小伙伴,我无比强烈的推荐阅读。 从目录上看,本书从基础知识开始介绍,重点谈了定位、建图、规划、控制这四个方面。 第一章,我觉得最值得...原创 2018-02-21 23:35:03 · 683 阅读 · 0 评论 -
移动机器人入门介绍
移动机器人技术应用: 天上飞的,水里游的,地上跑的,都可以应用移动机器人领域的技术。 比如说,1、工业机器人,搬运机器人(AGV);2、商用机器人:无人车、无人机、送餐机器人、导览机器人;3、消费类机器人:扫地机。 移动机器人的核心技术紧紧围绕着“感知”、“决策”、“执行”这三方面。 关键技术一:定位与建图(slam)。介绍如下(以下大部分摘自“www.sl原创 2017-09-10 19:40:32 · 5591 阅读 · 0 评论 -
卡尔曼滤波从应用到推导 -- kalman学习笔记
一、应用:估计小车的运动状态,以我们的底盘为例。1. 数学模型:2. 实现效果(Code runing):二、原理:流程和反馈图,参数的意义。1. 线性模型假设2. 卡尔曼滤波工作原理图:三、推导:五条方程式的推导过程。1. 非线性过程的卡尔曼滤波器2. 线性过程的卡尔曼滤波器总共五个方程,每个方程的推导如下:①这个是预测模型,线性方程模型,人为建立的。②这个是预测值和真实值之间误差协方差矩阵。其...原创 2017-03-12 14:43:20 · 1744 阅读 · 0 评论 -
学习SLAM需要哪些预备知识?
来源/知乎 立党。机器人内参编辑整理。 一、首先搬出宝典书 首先搬出宝典:Multiple View Geometry in Computer Vision[http://www.robots.ox.ac.uk/~vgg/hzbook/]。这本书基本涵盖了Vision-based SLAM这个领域的全部理论基础!读多少遍都不算多!另外建议配合Berk转载 2016-11-29 14:01:30 · 2541 阅读 · 1 评论 -
姿态解算系列一:经验型卡尔曼数据融合
目的:我们需要得到机器人运动的姿态信息,三个轴的角度以及角速度。 本文大纲: 1、传感器相关模型 2、坐标变换 3、卡尔曼数据融合 4、姿态解算流程 5、DMP 6、数据融合效果 本文内容: 姿态解算总框图(欧拉角方式): 一、数据模型、 噪声模型及曲线 1、欧拉角定义:原创 2016-10-29 17:02:20 · 21971 阅读 · 9 评论 -
ROS系列之初识gmapping(转载)
ROS系列之初识gmapping(转载) 本文出处:http://www.cnblogs.com/wenhust/p/5960973.html 简介 ROS 提供的 gmaping 包是用来生成地图的,它是对著名的开源 OpenSlam 包在 ROS 框架下的一个实现。这个包提供了对激光设备的 Slam,根据激光设备的输入和姿态数据从而建立一个基于网格的的2D地图。它转载 2016-10-22 13:23:07 · 1670 阅读 · 0 评论 -
Cartographer初体验(转载)
Cartographer初体验(转载) 原文出处:http://www.cnblogs.com/wenhust/p/5961017.html Cartographer简介 Cartographer is a system that provides real-time simultaneous localization and mapping (SLAM) in 2D转载 2016-10-22 13:21:15 · 1852 阅读 · 0 评论 -
粒子滤波实现及推导
一、应用example:机器人全局定位粒子滤波实现过程解读二、推导从贝叶斯到粒子滤波三、工程化细节探讨这是草稿,待完善。原创 2018-04-23 00:00:31 · 1255 阅读 · 0 评论