【Python_002】RFM人群模型 X Kmeans 聚类算法

本文介绍了RFM模型在消费者分析中的应用,包括R(最近一次消费时间)、F(消费频次)、M(消费金额)三个指标,以及如何通过KMeans聚类算法进行人群划分。KMeans算法基于距离计算将样本点分配到最近的组中心,通过迭代找到稳定的分类。RFM模型和KMeans结合能更精确地识别和分类客户价值。
摘要由CSDN通过智能技术生成

数据分析中常用RFM分析消费者人群,但常见RFM是用均值区分。 均值区分与利用Kmeans区别在于前者人为划定R、F、M高低界限(以均值为界限),后者为通过不断迭代确定界限(不过两者对于异常点都较为敏感)

RFM模型

首先介绍一下RFM模型

R – Recency 最近一次消费的时间
F – Frequency 一段时间内的消费频次
M – Monetary 一段时间内的消费金额

RFM模型主要用来划分客户/消费者,通过上述三个指标衡量客户/消费者价值

每个指标都分为0和1两档,1就是高,0就是低。把人群划分为2 * 2 * 2=8种:

图源百度百科
上图源于百度百科

具体分类:
111 – 重要价值人群
101 – 重要发展人群
011 – 重要保持人群
001 – 重要挽留人群
110 – 一般价值人群
100 – 一般发展人群
010 – 一般保持人群
000 – 一般挽留人群

具体应用:
最简单的例子,淘宝店给你发短信推送,开头到底是说“亲,好久不见” (例如针对重要保持人群和重要挽留人群),还是说“尊敬的VIP用户”(例如针对重要价值恩群),就可以靠RFM实现。

还可以通过RFM模型对不同人群做不同类型的促销来实现引流,提高复购率。

KMeans 聚类算法

什么是聚类

先说一下聚类的概念

相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性

一句话概括就是:物以类聚,人以群分

Kmeans 常用距离作为组内判断依据,也就是看每个样本点离各组组内中心的距离,离哪个组中心更近,该样本点就属于哪组

算法原理
  1. 先设定组数,也就是k到底等于几 (K必须事先给定,对于事先不知道需要划分成机组的数据集来说,这是Kmeans的缺点之一)

  2. 随机选取k个点,作为每组初始中心(因为之后需要不断迭代,所以最开始的随机点的位置并不是很重要)

    <
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值