BFS

BFS广度优先搜索:一般借助队列实现具体问题求解,跟深度优先搜索相似,也是一种枚举;

题目大意:

详见我的博客DFS

基本思路:

用队列实现BFS;

代码如下:

(这次就不输出路径了,不过我留着用f表示在队列中的位置,读者可以试着写一写输出最短路径的情况,题目是《啊哈!算法》上的,所以代码大致相似,因为我就是这么学的)

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>


using namespace std;


const int maxn = 2500+10;
const int maxv = 100+10;
struct note
{
    int x,y;
    int f;
    int s;
};
note que[maxn];
int arr[maxv][maxv],book[maxv][maxv];
int next[4][2]={{0,1},{1,0},{0,-1},{-1,0}};
int r,c,flag;
int main()
{
    scanf("%d%d",&r,&c);
    for(int i=1;i<=r;++i)
        for(int j=1;j<=c;++j)
            scanf("%d",&arr[i][j]);
    int startx,starty,endx,endy;
    scanf("%d%d%d%d",&startx,&starty,&endx,&endy);
    int head=1,tail=1;
    que[tail].x=startx;
    que[tail].y=starty;
    que[tail].f=0;
    que[tail].s=0;
    tail++;
    book[startx][starty]=1;
    while(head<tail)
    {
        int tx,ty;
        for(int i=0;i<=3;++i)
        {
            tx=que[head].x+next[i][0];
            ty=que[head].y+next[i][1];
            if(tx<1||tx>r||ty<1||ty>c) continue;
            if(arr[tx][ty]==0&&book[tx][ty]==0)
            {
                book[tx][ty]=1;
                que[tail].x=tx;
                que[tail].y=ty;
                que[tail].s=que[head].s+1;
                que[tail].f=head;
                tail++;
            }
            if(tx==endx&&ty==endy)
            {
                flag=1;
                break;
            }
        }
        if(flag==1) break;
        head++;
    }
    printf("%d",que[tail-1].s);
    return 0;
}

测试样例:

5 4
0 0 1 0
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
1 1 4 3

样例输出:

7

<think>嗯,多源BFS,听起来像是一种BFS的变种。用户可能已经知道普通的BFS是用来做单源最短路径的,那么多源的可能就是多个起点同时进行搜索。让我仔细想想,首先要确定多源BFS的定义和用途。 首先,多源BFS应该是在一个图中,同时从多个源点开始进行广度优先搜索。这样的话,可能用于解决多个起点到其他节点的最短距离问题,或者找到最近的某个目标点的最短路径。比如,处理网格中的多个起点同时扩散的情况,像是计算每个点到最近起点的距离。 然后,我需要回忆一下普通BFS的过程。普通BFS是从一个起点开始,逐层扩展,记录每个节点的距离。而多源的话,可能初始时将所有源点都加入队列,并且它们的距离设为0。这样,每次处理队列中的节点时,和普通BFS一样,但初始状态不同。这样处理的话,每个节点的最短距离就是离它最近的源点的距离。 接下来,应用场景可能有哪些呢?比如在网格问题中,多个火源同时蔓延,计算每个位置被火蔓延到的时间;或者在地图中,多个商店的位置,求每个住户到最近商店的距离。这些都是典型的多源最短路径问题,使用多源BFS可以有效解决,因为传统BFS每个源点都要跑一次的话时间复杂度会很高,而多源BFS只需要一次遍历,时间复杂度是O(N)或O(M*N)取决于问题规模。 然后需要讲清楚多源BFS实现步骤。初始化时,将所有源点加入队列,并标记它们的距离为0。之后,进行普通的BFS步骤,处理每个节点的邻居,如果邻居未被访问过,就更新其距离并加入队列。这样,每个节点第一次被访问时的距离就是最短的,因为BFS的特性保证了层序递增,最近的源点最先到达。 举个例子可能会有帮助。比如,在一个二维网格中,0代表可走,1代表障碍物,多个起点。要计算每个0的位置到最近的起点的最短距离。这时候,多源BFS就能高效解决。将所有的起点坐标加入初始队列,然后进行BFS,每个节点记录离最近起点的步数。 需要注意的问题可能包括处理障碍物,或者如何处理已经被访问过的节点。同时,多源BFS的时间复杂度应该和普通BFS一样,都是线性于节点数,因为每个节点只被访问一次。 此外,多源BFS的正确性基于广度优先搜索的最短路径性质,因为当多个源点同时开始扩散时,最先到达某个节点的那个源点的路径就是最短的。因此,不需要重复计算每个源点的情况,节省了时间。 可能还需要比较一下多源BFS和分别对每个源点做BFS的时间复杂度。比如,如果有k个源点,每个BFS是O(N),那么总时间是O(kN)。而多源BFS只需要O(N),所以在k较大时,效率提升明显。 总结的话,多源BFS的核心思想是利用BFS的层次遍历特性,从多个源点同时出发,逐层扩展,从而在一次遍历中计算出所有节点到最近源点的最短距离。适用于多个起点需要同时计算最短路径的场景,能够有效降低时间复杂度。</think>多源BFS是一种基于广度优先搜索(BFS)的改进算法,用于**同时从多个起点出发,逐层扩展并计算最短路径**。以下是逐步介绍: --- ### **1. 核心思想** - **普通BFS**:从单个起点出发,按层遍历所有可达节点,记录每个节点的最短距离。 - **多源BFS**:初始化时将多个起点同时加入队列,通过一次遍历即可计算所有节点到最近起点的最短距离。 --- ### **2. 适用场景** - 网格中计算每个位置到多个起点中最近一个的距离。 - 多个火源蔓延模拟(每个位置被火覆盖的最早时间)。 - 地图中多个商店定位问题(每个用户到最近商店的距离)。 --- ### **3. 实现步骤** 1. **初始化队列**: - 将所有起点加入队列。 - 标记每个起点的最短距离为0,其他节点初始化为无穷大(或未访问状态)。 2. **逐层扩展**: - 从队列中取出节点,遍历其相邻节点。 - 若相邻节点未被访问过,更新其最短距离为当前节点距离+1,并加入队列。 --- ### **4. 代码框架示例(网格问题)** ```python from collections import deque def multi_source_bfs(grid, sources): rows = len(grid) cols = len(grid[0]) dist = [[-1] * cols for _ in range(rows)] # 初始化距离矩阵 q = deque() # 添加所有源点 for (x, y) in sources: dist[x][y] = 0 q.append((x, y)) # 方向:上、下、左、右 dirs = [(-1, 0), (1, 0), (0, -1), (0, 1)] while q: x, y = q.popleft() for dx, dy in dirs: nx, ny = x + dx, y + dy if 0 <= nx < rows and 0 <= ny < cols: if dist[nx][ny] == -1: # 未访问过 dist[nx][ny] = dist[x][y] + 1 q.append((nx, ny)) return dist ``` --- ### **5. 时间复杂度** - 与普通BFS相同,为$$O(N)$$(假设网格共有$$N$$个节点),远优于对每个起点单独运行BFS的$$O(kN)$$($$k$$为起点数量)。 --- ### **6. 关键点** - **队列初始化**:所有起点需同时入队。 - **距离更新**:每个节点仅被第一次访问时更新为最短距离(BFS的天然特性)。 - **障碍处理**:在遍历相邻节点时需跳过障碍物(根据具体问题调整逻辑)。 --- ### **7. 示例分析** 假设网格如下(0为可通行,1为障碍),起点为$$(0,0)$$和$$(2,2)$$: $$ \begin{matrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ \end{matrix} $$ 通过多源BFS得到的距离矩阵为: $$ \begin{matrix} 0 & -1 & 4 \\ 1 & 2 & 3 \\ 2 & -1 & 0 \\ \end{matrix} $$ --- ### **8. 总结** 多源BFS通过一次遍历即可高效解决多起点最短路径问题,适用于网格、图结构中的扩散类场景。其核心在于利用队列的先进先出特性,保证最短距离的正确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值