生成模型学习-文本生成相关

本文探讨了AIGC的起源,特别是OpenAI的GPT-3如何开启文本生成的新纪元。随着DALL-E等在图像生成的进展,文本生成逐渐受到重视。文章介绍了从Encoder-Decoder架构到大规模预训练模型如GPT-3、PALM和PLUG的发展,并阐述了Instruct GPT如何改进模型对指令的理解能力。最后,讨论了不同规模模型在文本生成场景的应用,包括在资源有限和多任务场景下的选择。
摘要由CSDN通过智能技术生成

随着chatgpt的火爆,本文跟随前辈步伐在文本生成方面作初步的介绍,供大家了解。

AIGC 背景介绍 

AIGC 的成功开始于 OpenAI 提出的 GPT-3。之前没有预训练的生成模型效果和现在有差距,即使用监督学习 + fine-tune 的方式可以在某些 task 得到不错的效果,但是它的泛化能力比较差,因此当时的 AIGC 并没有被大家关注。所以当 OpenAI 提出的 GPT-3 可以根据 Prompt 提示词或者 instruction 指令去生成代码以及各种各样的文本时,大家才开始更多去关注和探索 AIGC 方向。另外,除了文本生成以外,DALL-E 和 DALL-E2 在图片生成方面的进展也是推动 AIGC 发展的重要因素。

本次分享主要关注文本生成,下面回顾一下文本生成发展的过程。

最早的生成是 Encoder-Decoder 架构,没有预训练,只是做一些任务上的 fine-tune 工作,当时效果比较差。随着 GPT-1 预训练的提出才开始有不错的效果,之后 BART 和 T5 这两个模型提出之后发现,用一个生成模型可以做很多 task,而且这些 task 其实效果都可以比较好。比如 T5 可以把各种不同的 NLP 任务都转化成生成的方式。AliceMind 在 20 年的时候自

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值