双塔召回模型的前世今生

双塔召回模型源于电商和推荐系统的高效召回需求,通过user和item特征独立输入DNN得到embedding,然后用cosine相似度计算匹配度。离线构建embedding并利用ANN进行近邻检索,解决大规模候选召回问题。模型中,归一化和temperature调整有助于优化训练和效果。负样本的采样策略,如in-batch采样和混合采样,是召回模型中的关键优化点。
摘要由CSDN通过智能技术生成

双塔的诞生

首先来看一下经典的精排模型DIN(Deep Interest Network for Click-Through Rate Prediction),通过user历史行为序列和目标item依次算权重得到用户的兴趣表征,并和user、item、context等特征拼接过DNN计算loss。

这种复杂的精排模型在线上serving时需同时输入user+item特征得到最终的预估值,速度很慢,一般只能支持百、千级别的候选。

可是召回的候选巨大,像淘宝、抖音等场景召回候选量级是千万乃至亿级别,上述模型显然是难以招架,需要牺牲精度换取延迟,最简单的想法便是:不要线上对所有候选均过图预估一遍,最好能将一部分结果离线提前算好

于是双塔模型闪亮登场,结构非常简单,但是却能对海量候选进行召回

  • user和item特征分别单独输入DNN,得到user embedding与item embedding

  • 将最后一层embedding计算cosine(下文会详细介绍为什么要用余弦距离)得到logit

logit代表user&item之间的匹配程度,比较经典的双塔DSSM(Deep Structured Semantic Models)结构如下,这里的query便是推荐场景的user

 

那么可能有人会疑惑:双塔模型也是神经网络啊,为什么速度就会快很多呢?

离线构图+近邻检索=海量候选实时召回

精排模型之所以慢,是因为对于所有的候选item都要实时过图;而双塔之所以快,当然不只是因为模型结构简单了,而是因为中间结果可以离线提前算好,并且通过高效的检索实现精度和效率的平衡。

首先我们先理清楚一件事:

  • item侧的embedding需要实时算吗?

  • 每个用户访问,都需要对item算一次e

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值