能量方程浅析

1.能量方程

根据热力学第一定律 ( 能量守恒定律 ),有:流体微团内能量的变化率=流人微团内的净热流量+体积力和表面力对微团做功的功率,可表述为:
E = B + C (1-1) E=B+C\tag{1-1} E=B+C(1-1)

其中,E包含两部分:

  • 由于分子随机运动而产生的(单位质量)内能 e;
  • 流体微团平动时具有的动能。单位质量的动能为 K = U 2 / 2 K=\mathbf U^2/2 K=U2/2

E = e + U 2 / 2 (1-2) E=e+\mathbf U^2/2\tag{1-2} E=e+U2/2(1-2)

B部分的热流也包括两部分:

  • 由于体积加热,如吸收或释放的辐射热(内部产生的能量): ρ r \rho r ρr,其中,r为单位质量的体积加热率;
  • 由温度梯度导致的跨过表面的热输运,即热传导(流入流出的能量): ∇ ⋅ q = − k ⋅ ∇ T \nabla \cdot \mathbf q=-k\cdot\nabla T q=kTk 为热导率
    B = ρ r + k ⋅ ∇ T (1-3) B=\rho r +k\cdot\nabla T\tag{1-3} B=ρr+kT(1-3)

C部分为做功所消耗的能量,分为两部分:

  • 体积力f做功: ρ f ⋅ U \rho\mathbf f\cdot\mathbf U ρfU
  • 表面力(压力p+应力 τ \tau τ)做功: − ∇ ⋅ ( p U ) + ∇ ⋅ ( τ ⋅ U ) -\nabla\cdot( p \mathbf U)+\nabla\cdot(\tau\cdot\mathbf U) (pU)+(τU)

C = ρ f ⋅ U − ∇ ⋅ ( p U ) + ∇ ⋅ ( τ ⋅ U ) (1-4) C=\rho \mathbf f\cdot\mathbf U-\nabla\cdot( p \mathbf U)+\nabla\cdot(\tau\cdot\mathbf U)\tag{1-4} C=ρfU(pU)+(τU)(1-4)
其中涉及到的张量运算规则:

τ ⋅ U = [ τ x x u + τ y x v + τ z x w τ x y u + τ y y v + τ z y w τ x z u + τ y z v + τ z z w ] (1-5) \tau\cdot\mathbf U= \left[ \begin{matrix} \tau_{xx}u+\tau_{yx}v+\tau_{zx}w\\ \tau_{xy}u+\tau_{yy}v+\tau_{zy}w\\ \tau_{xz}u+\tau_{yz}v+\tau_{zz}w \end{matrix} \right]\tag{1-5} τU=τxxu+τyxv+τzxwτxyu+τyyv+τzywτxzu+τyzv+τzzw(1-5)
则能量方程可表述为:
D [ ρ ( e + K ) ] D t = ρ r + k ⋅ ∇ T + ρ f ⋅ U − ∇ ⋅ ( p U ) + ∇ ⋅ ( τ ⋅ U ) (1-6) \frac{D[\rho(e+K)]}{Dt}=\rho r +k\cdot\nabla T+\rho \mathbf f\cdot\mathbf U-\nabla\cdot( p \mathbf U)+\nabla\cdot(\tau\cdot\mathbf U)\tag{1-6} DtD[ρ(e+K)]=ρr+kT+ρfU(pU)+(τU)(1-6)

2. 内能方程

上述为能量方程完整形式,CFD 中往往需要从中抽离一个动能项,从中得到一个动能方程。根据动量方程:

D ( ρ U ) D t = ∇ ⋅ τ − ∇ p + ρ f (2-1) \frac{D( \rho \mathbf U)}{D t}=\nabla \cdot \mathbf \tau -\nabla p+\rho \mathbf f\tag{2-1} DtD(ρU)=τp+ρf(2-1)

将动量方程每个分量乘以速度,加和,可得:

D ( ρ K ) D t = ( ∇ ⋅ τ ) ⋅ U − ∇ p ⋅ U + ρ f ⋅ U (2-2) \frac{D( \rho K)}{D t}=(\nabla \cdot \mathbf \tau )\cdot \mathbf U-\nabla p\cdot \mathbf U+\rho \mathbf f\cdot \mathbf U\tag{2-2} DtD(ρK)=(τ)UpU+ρfU(2-2)

则内能方程为:
D ( ρ e ) D t = ρ r + k ⋅ ∇ T − p ∇ ⋅ U + τ : ∇ U (2-3) \frac{D(\rho e)}{Dt}=\rho r +k\cdot\nabla T-p\nabla\cdot \mathbf U+\tau :\nabla\mathbf U\tag{2-3} DtD(ρe)=ρr+kTpU+τ:U(2-3)

其守恒形式:

∂ ( ρ e ) ∂ t + ∇ ⋅ ( ρ U e ) = ρ r + k ⋅ ∇ T − p ∇ ⋅ U + τ : ∇ U (2-4) \frac{\partial(\rho e)}{\partial t}+\nabla\cdot(\rho\mathbf Ue) =\rho r +k\cdot\nabla T-p\nabla\cdot \mathbf U+\tau :\nabla\mathbf U\tag{2-4} t(ρe)+(ρUe)=ρr+kTpU+τ:U(2-4)

3. 温度方程

根据 Fourier 定律,流体的比焓和温度方程可表述为:

∂ ( ρ h ) ∂ t + ∇ ⋅ ( ρ U h ) = − p ∇ ⋅ U + ∇ ⋅ ( λ ∇ T ) + Φ + S h (3-1) \frac{\partial(\rho h)}{\partial t}+\nabla\cdot(\rho\mathbf Uh)=-p\nabla\cdot \mathbf U+\nabla\cdot(\lambda\nabla T)+\Phi+S_h\tag{3-1} t(ρh)+(ρUh)=pU+(λT)+Φ+Sh(3-1)

其中,

  • p ∇ ⋅ U p\nabla\cdot\bf U pU :表面力对流体微元所做的功,一般可忽略
  • λ \lambda λ:流体的导热系数;
  • S h S_h Sh:流体的内热源;
  • Φ \Phi Φ:耗散函数(由于粘性作用机械能转化为热能的部分):

Φ = 2 μ [ ( ∂ u ∂ x ) 2 + [ ( ∂ v ∂ y ) 2 + ( ∂ w ∂ z ) 2 ] + μ [ ( ∂ v ∂ x + ∂ u ∂ y ) 2 + ( ∂ w ∂ y + ∂ v ∂ z ) 2 + ( ∂ u ∂ z + ∂ w ∂ x ) 2 ] + λ ∇ ⋅ U (3-2) \begin{aligned}\Phi &=2\mu\left[( \frac{\partial u}{\partial x})^2+[(\frac{\partial v}{\partial y})^2+(\frac{\partial w}{\partial z})^2\right]\\&+\mu\left[(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y})^2+(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z})^2 +(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x})^2\right]\\[2ex]&+\lambda\nabla\cdot\bf U\end{aligned}\tag{3-2} Φ=2μ[(xu)2+[(yv)2+(zw)2]+μ[(xv+yu)2+(yw+zv)2+(zu+xw)2]+λU(3-2)

对于理想流体,可取: h = c p T h=c_pT h=cpT,令 c p c_p cp 为常数,将耗散函数纳入到源项 S T S_T ST 中( S T = S h + Φ S_T=S_h+\Phi ST=Sh+Φ),有:

∂ ( ρ T ) ∂ t + ∇ ⋅ ( ρ U T ) = ∇ ⋅ ( λ c p ∇ T ) + S T (3-3) \frac{\partial(\rho T)}{\partial t}+\nabla\cdot(\rho\mathbf UT)=\nabla\cdot(\frac{\lambda}{c_p}\nabla T)+S_T\tag{3-3} t(ρT)+(ρUT)=(cpλT)+ST(3-3)

对于不可压缩流体,
∂ T ∂ t + ∇ ⋅ ( U T ) = ∇ ⋅ ( λ ρ c p ∇ T ) + S T ρ (3-4) \frac{\partial T}{\partial t}+\nabla\cdot(\mathbf UT)=\nabla\cdot(\frac{\lambda}{\rho c_p}\nabla T)+\frac{S_T}{\rho}\tag{3-4} tT+(UT)=(ρcpλT)+ρST(3-4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值