查全率,查准率,对于多个类别的mAP

本文详细介绍了目标检测中的关键评估指标——精度(Precision)、召回率(Recall)和平均精度均值(MAP)。精度是正确识别为正例的比例,召回率是真正例占所有正例的比例,而MAP则是多类别平均精度的衡量标准。通过理解这些指标,可以帮助优化和比较模型的性能。
摘要由CSDN通过智能技术生成

精度(precision),召回率(recall),map_pikaqiu_n95的博客-CSDN博客目标检测中经常会见到precision,recall,map三个指标用来评估一个模型的优劣,当然在很多其他的应用中也可以看到这三个指标的具体应用;因此很有必要对这三个指标进行详细的了解。在介绍这三个指标之前有必要先了解几个基本的术语:True positives,True negatives,False positives,False negative。大雁和飞机假设现有一个测试集,测试集中仅包含大雁和飞机两种目标,如图所示:假设分类的目标是:取出测试集中所有飞机图片,而非大雁图片现做如下定义:https://blog.csdn.net/pikaqiu_n95/article/details/109190404(38条消息) 机器学习分类结果混淆矩阵 TP、TN、FP、FN 防混淆基于方法_sdnuwjw的博客-CSDN博客_分类结果混淆矩阵https://blog.csdn.net/sdnuwjw/article/details/90383060

借用这兄弟的例子:

假设分类的目标是:取出测试集中所有飞机图片,而非大雁图片
现做如下定义:
True positives:    飞机的图片被正确识别为飞机
True negatives:大雁的图片被正确识别为大雁
False positives:大雁的图片被错误识别为飞机
False negatives:飞机的图片被错误识别为大雁

正确地将(正例)预测为(正例)(真正例):TP
正确地将(反例)预测为(反例)(真反例):TN
错误地将(反例)预测为(正例)(假正例):FP
错误地将(正例)预测为(反例)(假反例):FN


precision = tp / (tp + fp),True positives + False positives,就是系统识别为飞机的图片数

recall = tp / (tp + fn),True positives + False negatives,可以理解为一共有多少张真正的飞机图片

对于单个类别来说,pr曲线所包含的面积用来作为该类别的平均精度(average precision,ap);那么对于多个类别的模型而言,通常通过求各个类别的平均ap值作为其性能评估,即(mean average precision,map);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值