精度(precision),召回率(recall),map_pikaqiu_n95的博客-CSDN博客目标检测中经常会见到precision,recall,map三个指标用来评估一个模型的优劣,当然在很多其他的应用中也可以看到这三个指标的具体应用;因此很有必要对这三个指标进行详细的了解。在介绍这三个指标之前有必要先了解几个基本的术语:True positives,True negatives,False positives,False negative。大雁和飞机假设现有一个测试集,测试集中仅包含大雁和飞机两种目标,如图所示:假设分类的目标是:取出测试集中所有飞机图片,而非大雁图片现做如下定义:https://blog.csdn.net/pikaqiu_n95/article/details/109190404(38条消息) 机器学习分类结果混淆矩阵 TP、TN、FP、FN 防混淆基于方法_sdnuwjw的博客-CSDN博客_分类结果混淆矩阵https://blog.csdn.net/sdnuwjw/article/details/90383060
借用这兄弟的例子:
假设分类的目标是:取出测试集中所有飞机图片,而非大雁图片
现做如下定义:
True positives: 飞机的图片被正确识别为飞机
True negatives:大雁的图片被正确识别为大雁
False positives:大雁的图片被错误识别为飞机
False negatives:飞机的图片被错误识别为大雁
正确地将(正例)预测为(正例)(真正例):TP
正确地将(反例)预测为(反例)(真反例):TN
错误地将(反例)预测为(正例)(假正例):FP
错误地将(正例)预测为(反例)(假反例):FN
precision = tp / (tp + fp),True positives + False positives,就是系统识别为飞机的图片数
recall = tp / (tp + fn),True positives + False negatives,可以理解为一共有多少张真正的飞机图片
对于单个类别来说,pr曲线所包含的面积用来作为该类别的平均精度(average precision,ap);那么对于多个类别的模型而言,通常通过求各个类别的平均ap值作为其性能评估,即(mean average precision,map);