数据分析之KAGGLE-泰坦尼克号人员生存预测问题

分析目的

完成对什么样的人可能生存的分析。

分析步骤

1、数据分析

数据下载和加载

数据集下载地址:https://www.kaggle.com/c/titanic/data

数据说明

特征描述
survival生存
pclass票类别
sex性别
Age年龄
sibsp兄弟姐妹/配偶
parch父母/孩子的数量
ticket票号
fare乘客票价
cabin客舱号码
embarked登船港口
# 导入相关数据包
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
#看一下数据特征
train.info()
print("-"*20)
#默认输出前五行数据
train.head()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
--------------------
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th...	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

特征分析

  1. 数值型变量之间的相关性
# 相关性协方差表,corr()函数
train_corr = train.drop('PassengerId',axis=1).corr()
train_corr
	Survived	Pclass	Age	SibSp	Parch	Fare
Survived	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000
# 画相关性热图
fig = plt.subplots(figsize=(10,8))
fig = sns.heatmap(train_corr, vmin=-1, vmax=1 , annot=True)
  1. 分析每个变量与结果之间的关系
#Pclass 乘客等级
train_p = train.groupby(['Pclass'])['Pclass','Survived'].mean()
train_p
#看出等级为1时相关性最大
	Pclass	Survived
Pclass		
1	1.0	0.629630
2	2.0	0.472826
3	3.0	0.242363
#条形图
train[['Pclass','Survived']].groupby(['Pclass']).mean().plot.bar()

等级越高存活率越大

#性别
train_s = train.groupby(['Sex'])['Sex','Survived'].mean()
train_s
#女性有更高的存活率
	Survived
Sex	
female	0.742038
male	0.188908
#条形图
train[['Sex','Survived']].groupby(['Sex']).mean().plot.bar()

女性存活率大

#兄弟姊妹数
train[['SibSp','Survived']].groupby(['SibSp']).mean()
#父母子女数
train[['Parch','Survived']].groupby(['Parch']).mean()
#可以看出与能否生存相关性不大,后续可以构造新变量
	Survived
SibSp	
0	0.345395
1	0.535885
2	0.464286
3	0.250000
4	0.166667
5	0.000000
8	0.000000
	Survived
Parch	
0	0.343658
1	0.550847
2	0.500000
3	0.600000
4	0.000000
5	0.200000
6	0.000000
#年龄与生存情况的分析
#年龄是有大部分缺失值的,缺失值需要进行处理,可以使用填充或者模型预测
train_g = sns.FacetGrid(train, col='Survived',height=5)
train_g.map(plt.hist, 'Age', bins=40)
train.groupby(['Age'])['Survived'].mean().plot()

在这里插入图片描述

#登港港口与生存情况的分析
#可以看出C地的生存率更高
train_e = train[['Embarked','Survived']].groupby(['Embarked']).mean().plot.bar()

在这里插入图片描述

2、特征工程

#先将数据集合并,一起做特征工程(注意,标准化的时候需要分开处理)
#先将test补齐,然后通过pd.apped()合并
test['Survived'] = 0
#test.head()
train_test = train.append(test,sort=False)
#train_test.head()
#test添加一列数据,生存都为0
	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q	0
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S	0
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q	0
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S	0
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S	0

特征处理

  1. Pclass,乘客等级,1是最高级
fea1 = pd.get_dummies(train_test,columns=['Pclass'])
fea1.head()
Age	Cabin	Embarked	Fare	Name	Parch	PassengerId	Sex	SibSp	Survived	Ticket	Pclass_1	Pclass_2	Pclass_3
0	22.0	NaN	S	7.2500	Braund, Mr. Owen Harris	0	1	male	1	0	A/5 21171	0	0	1
1	38.0	C85	C	71.2833	Cumings, Mrs. John Bradley (Florence Briggs Th...	0	2	female	1	1	PC 17599	1	0	0
2	26.0	NaN	S	7.9250	Heikkinen, Miss. Laina	0	3	female	0	1	STON/O2. 3101282	0	0	1
3	35.0	C123	S	53.1000	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	4	female	1	1	113803	1	0	0
4	35.0	NaN	S	8.0500	Allen, Mr. William Henry	0	5	male	0	0	373450	0	0	1
  1. Sex,性别没有缺失值,直接分列
fea2 = pd.get_dummies(fea1,columns=["Sex"])
fea2.head()
Age	Cabin	Embarked	Fare	Name	Parch	PassengerId	SibSp	Survived	Ticket	Pclass_1	Pclass_2	Pclass_3	Sex_female	Sex_male
0	22.0	NaN	S	7.2500	Braund, Mr. Owen Harris	0	1	1	0	A/5 21171	0	0	1	0	1
1	38.0	C85	C	71.2833	Cumings, Mrs. John Bradley (Florence Briggs Th...	0	2	1	1	PC 17599	1	0	0	1	0
2	26.0	NaN	S	7.9250	Heikkinen, Miss. Laina	0	3	0	1	STON/O2. 3101282	0	0	1	1	0
3	35.0	C123	S	53.1000	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	4	1	1	113803	1	0	0	1	0
4	35.0	NaN	S	8.0500	Allen, Mr. William Henry	0	5	0	0	373450	0	0	1	0	1
  1. SibSp and Parch 兄妹配偶数/父母子女数
train_test['SibSp_Parch'] = train_test['SibSp'] + train_test['Parch']
train_test = pd.get_dummies(train_test,columns = ['SibSp','Parch','SibSp_Parch']) 
  1. Embarked 数据有极少量(3个)缺失值,但是在分列的时候,缺失值的所有列可以均为0,所以可以考虑不填充.
    另外,也可以考虑用测试集众数来填充.先找出众数,再采用df.fillna()方法
train_test = pd.get_dummies(train_test,columns=["Embarked"])
  1. name
    1.在数据的Name项中包含了对该乘客的称呼,将这些关键词提取出来,然后做分列处理.
#从名字中提取出称呼: df['Name].str.extract()是提取函数,配合正则一起使用
train_test['Name1'] = train_test['Name'].str.extract('.+,(.+)', expand=False).str.extract('^(.+?)\.', expand=False).str.strip()
#将姓名分类处理()
train_test['Name1'].replace(['Capt', 'Col', 'Major', 'Dr', 'Rev'], 'Officer' , inplace = True)
train_test['Name1'].replace(['Jonkheer', 'Don', 'Sir', 'the Countess', 'Dona', 'Lady'], 'Royalty' , inplace = True)
train_test['Name1'].replace(['Mme', 'Ms', 'Mrs'], 'Mrs')
train_test['Name1'].replace(['Mlle', 'Miss'], 'Miss')
train_test['Name1'].replace(['Mr'], 'Mr' , inplace = True)
train_test['Name1'].replace(['Master'], 'Master' , inplace = True)
#分列处理
train_test = pd.get_dummies(train_test,columns=['Name1'])

2.从姓名中提取出姓做特征

#从姓名中提取出姓
train_test['Name2'] = train_test['Name'].apply(lambda x: x.split('.')[1])

#计算数量,然后合并数据集
Name2_sum = train_test['Name2'].value_counts().reset_index()
Name2_sum.columns=['Name2','Name2_sum']
train_test = pd.merge(train_test,Name2_sum,how='left',on='Name2')

#由于出现一次时该特征时无效特征,用one来代替出现一次的姓
train_test.loc[train_test['Name2_sum'] == 1 , 'Name2_new'] = 'one'
train_test.loc[train_test['Name2_sum'] > 1 , 'Name2_new'] = train_test['Name2']
del train_test['Name2']

#分列处理
train_test = pd.get_dummies(train_test,columns=['Name2_new'])
#删掉姓名这个特征
del train_test['Name']
  1. fare 该特征有缺失值,先找出缺失值的那调数据,然后用平均数填充
#从上面的分析,发现该特征train集无miss值,test有一个缺失值,先查看
train_test.loc[train_test["Fare"].isnull()]
#票价与pclass和Embarked有关,所以用train分组后的平均数填充
train.groupby(by=["Pclass","Embarked"]).Fare.mean()
Pclass  Embarked
1       C           104.718529
        Q            90.000000
        S            70.364862
2       C            25.358335
        Q            12.350000
        S            20.327439
3       C            11.214083
        Q            11.183393
        S            14.644083
Name: Fare, dtype: float64
#用pclass=3和Embarked=S的平均数14.644083来填充
train_test["Fare"].fillna(14.435422,inplace=True)
  1. Ticket该列和名字做类似的处理,先提取,然后分列
#将Ticket提取字符列
#str.isnumeric()  如果S中只有数字字符,则返回True,否则返回False
train_test['Ticket_Letter'] = train_test['Ticket'].str.split().str[0]
train_test['Ticket_Letter'] = train_test['Ticket_Letter'].apply(lambda x:np.nan if x.isnumeric() else x)
train_test.drop('Ticket',inplace=True,axis=1)
#分列,此时nan值可以不做处理
train_test = pd.get_dummies(train_test,columns=['Ticket_Letter'],drop_first=True)
  1. Age
    1.该列有大量缺失值,考虑用一个回归模型进行填充.
    2.在模型修改的时候,考虑到年龄缺失值可能影响死亡情况,用年龄是否缺失值来构造新特征
"""这是模型就好后回来增加的新特征
考虑年龄缺失值可能影响死亡情况,数据表明,年龄缺失的死亡率为0.19."""
train_test.loc[train_test["Age"].isnull()]['Survived'].mean()

0.19771863117870722
# 所以用年龄是否缺失值来构造新特征
train_test.loc[train_test["Age"].isnull() ,"age_nan"] = 1
train_test.loc[train_test["Age"].notnull() ,"age_nan"] = 0
train_test = pd.get_dummies(train_test,columns=['age_nan'])

利用其他组特征量,采用机器学习算法来预测Age

train_test.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 0 to 1308
Columns: 187 entries, Age to age_nan_1.0
dtypes: float64(2), int64(3), object(1), uint8(181)
memory usage: 343.0+ KB
#创建没有['Age','Survived']的数据集
missing_age = train_test.drop(['Survived','Cabin'],axis=1)
#将Age完整的项作为训练集、将Age缺失的项作为测试集。
missing_age_train = missing_age[missing_age['Age'].notnull()]
missing_age_test = missing_age[missing_age['Age'].isnull()]
#构建训练集合预测集的X和Y值
missing_age_X_train = missing_age_train.drop(['Age'], axis=1)
missing_age_Y_train = missing_age_train['Age']
missing_age_X_test = missing_age_test.drop(['Age'], axis=1)
# 先将数据标准化
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
#用测试集训练并标准化
ss.fit(missing_age_X_train)
missing_age_X_train = ss.transform(missing_age_X_train)
missing_age_X_test = ss.transform(missing_age_X_test)
#使用贝叶斯预测年龄
from sklearn import linear_model
lin = linear_model.BayesianRidge()
lin.fit(missing_age_X_train,missing_age_Y_train)

BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,
        fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
        normalize=False, tol=0.001, verbose=False)
#利用loc将预测值填入数据集
train_test.loc[(train_test['Age'].isnull()), 'Age'] = lin.predict(missing_age_X_test)
#将年龄划分是个阶段10以下,10-18,18-30,30-50,50以上
train_test['Age'] = pd.cut(train_test['Age'], bins=[0,10,18,30,50,100],labels=[1,2,3,4,5])

train_test = pd.get_dummies(train_test,columns=['Age'])
  1. Cabin
    cabin项缺失太多,只能将有无Cain首字母进行分类,缺失值为一类,作为特征值进行建模,也可以考虑直接舍去该特征 cabin项缺失太多,只能将有无Cain首字母进行分类,缺失值为一类,作为特征值进行建模,也可以考虑直接舍去该特征
#cabin项缺失太多,只能将有无Cain首字母进行分类,缺失值为一类,作为特征值进行建模
train_test['Cabin_nan'] = train_test['Cabin'].apply(lambda x:str(x)[0] if pd.notnull(x) else x)
train_test = pd.get_dummies(train_test,columns=['Cabin_nan'])
#cabin项缺失太多,只能将有无Cain首字母进行分类,
train_test.loc[train_test["Cabin"].isnull() ,"Cabin_nan"] = 1
train_test.loc[train_test["Cabin"].notnull() ,"Cabin_nan"] = 0
train_test = pd.get_dummies(train_test,columns=['Cabin_nan'])
train_test.drop('Cabin',axis=1,inplace=True)
  1. 特征工程处理完了,划分数据集
train_data = train_test[:891]
test_data = train_test[891:]
train_data_X = train_data.drop(['Survived'],axis=1)
train_data_Y = train_data['Survived']
test_data_X = test_data.drop(['Survived'],axis=1)

数据规约

  1. 线性模型需要用标准化的数据建模,而树类模型不需要标准化的数据
  2. 处理标准化的时候,注意将测试集的数据transform到test集上
from sklearn.preprocessing import StandardScaler
ss2 = StandardScaler()
ss2.fit(train_data_X)
train_data_X_sd = ss2.transform(train_data_X)
test_data_X_sd = ss2.transform(test_data_X)

3、建立模型

模型发现

  1. 可选单个模型模型有随机森林,逻辑回归,svm,xgboost,gbdt等.
  2. 也可以将多个模型组合起来,进行模型融合,比如voting,stacking等方法
  3. 好的特征决定模型上限,好的模型和参数可以无线逼近上限.
  4. 我测试了多种模型,模型结果最高的随机森林,最高有0.8.

构建模型

随机森林

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=150,min_samples_leaf=3,max_depth=6,oob_score=True)
rf.fit(train_data_X,train_data_Y)

test["Survived"] = rf.predict(test_data_X)
RF = test[['PassengerId','Survived']].set_index('PassengerId')
RF.to_csv('RF.csv')

# 随机森林是随机选取特征进行建模的,所以每次的结果可能都有点小差异
# 如果分数足够好,可以将该模型保存起来,下次直接调出来使用0.81339 'rf10.pkl'
from sklearn.externals import joblib
joblib.dump(rf, 'rf10.pkl')

LogisticRegression

from sklearn.linear_model import LogisticRegression
from sklearn.grid_search import GridSearchCV

lr = LogisticRegression()
param = {'C':[0.001,0.01,0.1,1,10], "max_iter":[100,250]}
clf = GridSearchCV(lr, param,cv=5, n_jobs=-1, verbose=1, scoring="roc_auc")
clf.fit(train_data_X_sd, train_data_Y)

# 打印参数的得分情况
clf.grid_scores_
# 打印最佳参数
clf.best_params_

# 将最佳参数传入训练模型
lr = LogisticRegression(clf.best_params_)
lr.fit(train_data_X_sd, train_data_Y)

# 输出结果
test["Survived"] = lr.predict(test_data_X_sd)
test[['PassengerId', 'Survived']].set_index('PassengerId').to_csv('LS5.csv')

SVM

from sklearn import svm
svc = svm.SVC()

clf = GridSearchCV(svc,param,cv=5,n_jobs=-1,verbose=1,scoring="roc_auc")
clf.fit(train_data_X_sd,train_data_Y)

clf.best_params_

svc = svm.SVC(C=1,max_iter=250)

# 训练模型并预测结果
svc.fit(train_data_X_sd,train_data_Y)
svc.predict(test_data_X_sd)

# 打印结果
test["Survived"] = svc.predict(test_data_X_sd)
SVM = test[['PassengerId','Survived']].set_index('PassengerId')
SVM.to_csv('svm1.csv')

GBDT

from sklearn.ensemble import GradientBoostingClassifier

gbdt = GradientBoostingClassifier(learning_rate=0.7,max_depth=6,n_estimators=100,min_samples_leaf=2)

gbdt.fit(train_data_X,train_data_Y)

test["Survived"] = gbdt.predict(test_data_X)
test[['PassengerId','Survived']].set_index('PassengerId').to_csv('gbdt3.csv')

xgboost

import xgboost as xgb

xgb_model = xgb.XGBClassifier(n_estimators=150,min_samples_leaf=3,max_depth=6)
xgb_model.fit(train_data_X,train_data_Y)

test["Survived"] = xgb_model.predict(test_data_X)
XGB = test[['PassengerId','Survived']].set_index('PassengerId')
XGB.to_csv('XGB5.csv')

4、建立模型

模型融合 voting

from sklearn.ensemble import VotingClassifier

from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=0.1,max_iter=100)

import xgboost as xgb
xgb_model = xgb.XGBClassifier(max_depth=6,min_samples_leaf=2,n_estimators=100,num_round = 5)

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=200,min_samples_leaf=2,max_depth=6,oob_score=True)

from sklearn.ensemble import GradientBoostingClassifier
gbdt = GradientBoostingClassifier(learning_rate=0.1,min_samples_leaf=2,max_depth=6,n_estimators=100)

vot = VotingClassifier(estimators=[('lr', lr), ('rf', rf),('gbdt',gbdt),('xgb',xgb_model)], voting='hard')
vot.fit(train_data_X_sd,train_data_Y)

test["Survived"] = vot.predict(test_data_X_sd)
test[['PassengerId','Survived']].set_index('PassengerId').to_csv('vot5.csv')

模型融合 stacking

# 划分train数据集,调用代码,把数据集名字转成和代码一样
X = train_data_X_sd
X_predict = test_data_X_sd
y = train_data_Y

'''模型融合中使用到的各个单模型'''
from sklearn.linear_model import LogisticRegression
from sklearn import svm
import xgboost as xgb
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier

clfs = [LogisticRegression(C=0.1,max_iter=100),
        xgb.XGBClassifier(max_depth=6,n_estimators=100,num_round = 5),
        RandomForestClassifier(n_estimators=100,max_depth=6,oob_score=True),
        GradientBoostingClassifier(learning_rate=0.3,max_depth=6,n_estimators=100)]

# 创建n_folds
from sklearn.cross_validation import StratifiedKFold
n_folds = 5
skf = list(StratifiedKFold(y, n_folds))

# 创建零矩阵
dataset_blend_train = np.zeros((X.shape[0], len(clfs)))
dataset_blend_test = np.zeros((X_predict.shape[0], len(clfs)))

# 建立模型
for j, clf in enumerate(clfs):
    '''依次训练各个单模型'''
    # print(j, clf)
    dataset_blend_test_j = np.zeros((X_predict.shape[0], len(skf)))
    for i, (train, test) in enumerate(skf):
        '''使用第i个部分作为预测,剩余的部分来训练模型,获得其预测的输出作为第i部分的新特征。'''
        # print("Fold", i)
        X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]
        clf.fit(X_train, y_train)
        y_submission = clf.predict_proba(X_test)[:, 1]
        dataset_blend_train[test, j] = y_submission
        dataset_blend_test_j[:, i] = clf.predict_proba(X_predict)[:, 1]
    '''对于测试集,直接用这k个模型的预测值均值作为新的特征。'''
    dataset_blend_test[:, j] = dataset_blend_test_j.mean(1)

# 用建立第二层模型
clf2 = LogisticRegression(C=0.1,max_iter=100)
clf2.fit(dataset_blend_train, y)
y_submission = clf2.predict_proba(dataset_blend_test)[:, 1]

test = pd.read_csv("test.csv")
test["Survived"] = clf2.predict(dataset_blend_test)
test[['PassengerId','Survived']].set_index('PassengerId').to_csv('stack3.csv')

本文参考GitHub侵删。

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
泰坦尼克号存活率预测是一个经典的数据科学项目,通常在Kaggle这样的数据竞赛平台上进行。决策树模型在该任务中被广泛应用,因为它直观易懂,能够处理分类问题,并且可以解释各个特征对预测结果的影响。 **决策树模型简介**: - 决策树是一种监督学习算法,它模拟了人类做出决策的过程,将数据集分割成多个小的子集,每个子集对应树的一个分支,直到达到某个终止条件(如达到最小样本数或所有样本属于同一类别)。 - 在泰坦尼克号案例中,决策树会根据乘客的年龄、性别、票价等级、登船地点等特征,预测他们在沉船事故中的生存概率。 **模型构建步骤**: 1. 数据加载和预处理:获取包含乘客基本信息的CSV文件,清洗缺失值、异常值,以及对非数值特征进行编码。 2. 特征选择:分析特征与存活率的相关性,可能保留性别、年龄、社会经济地位等关键特征。 3. 模型训练:使用训练数据集构建决策树,调整参数如最大深度、最小样本分裂等。 4. 模型评估:用交叉验证的方式,在测试数据上计算准确率、精度、召回率等指标。 5. 模型优化:可能使用集成方法如随机森林或梯度提升树,提高预测性能。 **Kaggle上的应用**: - 在Kaggle上,参赛者会提交预测结果,Kaggle会根据给定的标准(如log损失或准确率)进行评分,排名前几位的解决方案通常会分享他们的代码和思路,供其他人学习。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值