Faster R-CNN:使用区域建议网络进行实时目标检测

1、Introduction

一个RPN是一个全卷积网络同时预测每个位置的对象分数和对象边界。On top of these conv features(除了这些卷积特征),我们建立一个RPNs通过增加两个额外的卷积层,一个是编码每个卷积图的位置转换成一个短的特征向量(例如256维),另一个在每一个卷积图的位置,输出一个目标分数和回归k个(k=9)区域建议框参数化坐标(坐标偏移量)和不同的尺度和比率相关。

                                

这个方案迅速收敛通过产生统一RPNs和Fast R-CNN网络, 两个任务输入为一个共享卷积层Feature Map,如下图来自于https://zhuanlan.zhihu.com/p/31426458

 

3、Region Proposal Networks

一个RPN利用一张任意尺寸的图片作为输入,输出一系列的目标建议框,每个框有一个目标分数。通过在Feautere Map滑动窗口生成区域建议框

Translation-Invariant Anchors(转移传输不变性,多尺度输入)

每个滑动窗口位置预测k个建议框,cls有2k个分数,2对应前景和背景,reg有4k个输出,对应k个框的坐标。

为了解决多尺度问题,学习k个边界框回归,不分享权重,保持预测框的多种尺寸。

A Loss Function for learning region proposals

正样本IoU(GT,Anchor)>0.7,负样本IoU(GT,Anchor)<0.3,其他anchors不参与训练。

多任务损失函数:(1)

                                                                                                              (2)

                                                       (3)

(1)分类加损失,分类256一个min-batch,一张图产生2400个anchors,N_{reg}=2400,归一化后\lambda=10,(2)中R为smoothL1损失函数(3),分类损失函数为逻辑回归,pi为预测值,pi*为真实标签,正样本为1,负样本为0,回归损失函数中当为负样本pi*为0,ti是一个向量代表输出框的参数化坐标,ti*是GT框和正样本anchor对应的坐标值。

在回归任务中,将4个坐标参数化:

(4)

x,xa,x*,分别代表预测框,anchor框坐标值,GT框坐标,y,w,h也一样。所以回归网络t_{i}输出的object框的偏移量,并非框的坐标值,通过回归校正框的坐标。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值