股票量化分析工具QTYX使用攻略——小市值轮动选股策略(更新2.5.9)

本文介绍了量化交易系统QTYX,旨在为搭建个人量化系统提供模板并提供源码。阐述了小市值轮动策略,指出其优缺点,提出叠加选股策略获取超额收益。还详细说明了使用QTYX进行小市值选股的操作流程,包括数据获取、条件选股等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7d537d40034cdb5add98a4ae82bf5ec3.png

搭建自己的量化交易系统

568ed3f49161d3e02c827790c5029b37.png

如果要长期在市场中立于不败之地!必须要形成一套自己的交易系统。

如何学会搭建自己的量化交易系统?

边学习边实战,在实战中学习才是最有效地方式。于是我们分享一个即可以用于学习,也可以用于实战炒股分析的量化系统——QTYX。

我们分享QTYX系统目的是提供给大家一个搭建量化系统的模版,最终帮助大家搭建属于自己的系统。因此我们提供源码,可以根据自己的风格二次开发。

QTYX系统结构如下所示:

8c40d7accccc5370daa11d937553b84d.png

由于QTYX一直迭代更新,当前介绍对应于版本V2.5.9。后续升级版本会同步更新文档内容。

12678d3b4d6053ca9a6df505035f54b6.png

功能概述

1d4497d46d861666316ee2106ba633ad.png

风靡市场的小市值轮动策略是一个操作简单,收益可观的策略。

策略方法是:在每个月的第一天,找出市值最小的10-30只股票,然后全仓等额买入。每月如此反复,近10年的收益在10倍以上。至少目前来看仍然是有效的。

小市值轮动策略的内在逻辑是市值较小的股票业绩基数小、成长性高,更容易讲故事和被资金炒作,这是小市值策略能获得超额收益的主要原因。

不过这个策略存在几个风险的地方:

1. 小市值选股已经成为行业公开的“秘密”,之前简单的策略不能保证将来继续赚钱,需要叠加其他因子加强策略的有效性。

2. 小市值选股回撤比例较高,大幅亏损时容易被动止损离场。

‍3. 小市值选股持股周期较长,持股个数较多,对于小资金量的交易者来说,资金的使用率偏低。

我们的思路是通过小市值策略选出的股票作为股票池,然后叠加上“形态驱动型”“RPS驱动型”选股策略,挖掘出龙头股的主升浪阶段去持有,以获取超额的收益。

比如2亿市值的天禾股份,大部份时间都是在区间内震荡,简单按月买卖的话性价比并不高,但是在2022年10月到11月期间介入的话收益率可以做到70%-80%左右。

093af8aada28b1406d76543400936427.png

股票量化分析工具QTYX支持“小市值”选股功能,通过这个选股策略生成自选股票池,继而执行更高阶的选股环节。

a2d2bbb0cfc46ab9fa194eef13d1543f.png

使用小市值选股功能‍‍‍‍

63f16da63daf379e6adaf7bae76f6882.png

启动QTYX->【选股流程】->【开始数据驱动选股】->【刷新选股数据】。

在“当前日期”框中选择当前最近的交易日期,比如2023年01月20日。

在“选股数据源”列表下选择“爬虫每日指标”。然后会跳出两个选项,一个是A股的全部股票的数据,第二个是目前股票池所对应的数据。这里选【A股数据源】。

15e9ca2adef67c514066bf37cedd3744.png

获取到的数据内容包括:股票代码、所属行业、所在地域、上市日期、最新价格、涨跌额、涨跌幅、成交量、成交额、最高,最低、量比、市盈率、市净率、总市值流通市值之类。

c71df7c96d4fbe4ab9698af33bec8513.png

获取到了股票数据,接下来可以用条件表达式来选股。

点击【选股流程】->【开始数据驱动选股】->【开始条件选股】。

19774643abe4f5b48c93a4de34457060.png

  • 剔除ST个股,避免踩到退市股

  • 剔除科创板,毕竟门槛比较高,相对于主板创业板,被爆炒的概率要低一些。

  • 过滤最近一年上市的个股

可以看到界面中出现了符合条件的股票:

a2a002ceaa7f4ac828a994e7bcbb94e0.png

依次类推,最关键的一步是选择“总市值小于20亿”,升序排列。(流通市值也可以,但要注意解禁带来的影响)

e6f72720cb52727e470924cfe49021a7.png

可以看到界面中出现了符合条件的股票:

6193d57da90fe85b364346d0ab62ebdf.png

当然,大家也可以按照这个方式去筛选“市净率”、“市盈率”指标,当后续叠加了形态选股结果时,还可以用这个方式筛选“业绩报告”指标。‍‍‍

然后把结果保存到自选股票池中。

点击【选股流程】->【开始数据驱动选股】->【保存选股结果】,选择“完全替换”和“增量替换”都可以。

也可以点击股票代码单独添加股票,这个时候会触发“高级分析功能”,比如加入组合分析池、查看行情走势、查看现金流量、查看F10 资料等等。

482a78eddd63e466570c9d1f51dcb1c7.png

加入到“自选股票池”之后,就可以展开更多选股流程体系中的分析了,比如选择“形态驱动选股”,选择识别“自选股票池”中符合要求的个股。具体可以查看对应的使用攻略介绍。

cfd6a61e2241662bdcabccb26b6dcda8.png

股票量化分析工具QTYX使用攻略——RPS指标选取强势股(更新2.5.7)

股票量化分析工具QTYX使用攻略——均线系统多头排列选股(更新2.5.7)

股票量化分析工具QTYX使用攻略——形态选股叠加业绩报告

说明

完整的源码上传到知识星球《玩转股票量化交易》中,想要加入知识星球《玩转股票量化交易》的小伙伴记得先微信call我获取福利!

知识星球介绍点击:知识星球《玩转股票量化交易》精华内容概览

<think>好的,用户的问题是关于QMT平台中集合竞价选股的方法或策略。首先,我需要回顾一下QMT平台的相关知识,并结合提供的引用内容来整理答案。 用户提到的引用中有关于QMT平台的介绍,比如引用[2]提到在QMT中使用通达信公式转换,处理日线回测时需要注意下单价格为当天收盘价。这可能和集合竞价阶段的数据获取有关。此外,引用[1]提到在分钟回测中可用当天开盘价,但集合竞价下单时无法使用,这可能影响策略的设计。 接下来,我需要确定集合竞价选股的关键点。通常,集合竞价阶段的数据包括开盘价、成交量、委托量等。策略可能基于这些指标,比如高开幅度、成交量突增等。需要确保在QMT中能够获取这些数据,比如使用get_current_data函数,但要注意在回测中的限制,如引用[1]所说,集合竞价时无法知道开盘价,可能需要调整回测逻辑。 然后,考虑策略构建方法。可能需要结合技术指标,如引用[2]中的通达信公式转换,将选股条件转换为Python代码。例如,使用量价关系或市场情绪指标。此外,引用[3]提到QTYX系统支持自定义选股,可能可以参考其选股框架,利用问财等工具获取数据。 还需要考虑回测机制,如引用[2]提到的日线周期回测使用handlebar机制,下单价格为收盘价。这可能与实际集合竞价的成交价不同,需要特别注意回测结果的准确性,可能需要使用分钟级别的回测数据。 最后,整理步骤:数据获取、策略逻辑、编码实现、回测优化。确保每个步骤都符合QMT平台的功能和限制,并引用相关的参考资料来支持建议。</think>关于QMT平台集合竞价选股策略的构建方法,可参考以下步骤: ### 一、数据获取要点 1. 使用$get\_current\_data()$获取实时数据,需注意**集合竞价阶段**的特殊性: - 可获取$pre\_close$(前收盘价)、$limit\_up\_price$(涨停价)等静态数据 - 态数据如$bid\_volumes$(委买量)、$ask\_volumes$(委卖量)需通过Level2接口获取[^1] 2. 关键指标计算公式: - 开盘强度比:$$强度比 = \frac{open\_price}{pre\_close} \times 100\%$$ - 委托不平衡度:$$委差比 = \frac{bid\_volume - ask\_volume}{bid\_volume + ask\_volume}$$ ### 二、策略逻辑设计 1. **量价突破型策略**(参考引用[2]的指标转换方法): - 条件1:前日涨停且当日竞价涨幅>3% - 条件2:竞价量能>5日均量的2倍 - 实现示例: ```python def is_breakout(stock): data = get_history_data(stock, &#39;1d&#39;, &#39;close,volume&#39;, 5) current = get_current_data(stock) cond1 = (data[&#39;close&#39;][-2] == data[&#39;close&#39;][-2] * 1.1) # 前日涨停判断 cond2 = (current[&#39;open&#39;] / data[&#39;close&#39;][-1] > 1.03) cond3 = current[&#39;volume&#39;] > data[&#39;volume&#39;].mean() * 2 return cond1 & cond2 & cond3 ``` 2. **市场情绪联策略**(基于引用[3]的选股框架): - 步骤1:筛选所属行业竞价强度Top3的板块 - 步骤2:在板块内选委买比率前5的个 - 使用$get\_industry\_stocks()$获取行业成分[^3] ### 三、回测注意事项 1. 时间设定: - 回测周期应包含**09:15-09:25**的集合竞价时段 - 使用分钟级回测模式而非日线模式[^2] 2. 成交机制模拟: - 价格匹配:按**最大成交量原则** - 委托方式示例: ```python order(stock, &#39;limit&#39;, price=涨停价, amount=委托量, time=&#39;09:25:00&#39;) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值